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ABSTRACT
We present methods for optimally adapting Web processes to exoge-
nous events while preserving inter-service dependencies. For exam-
ple, in a supply chain process, orders placed by the manufacturer may
get delayed in arriving. In response to this event, the manufacturer
has the choice of either waiting out the delay or changing the sup-
plier. Additionally, there may be compatibility constraints between
the different orders, thereby introducing the problem of coordination
between them if the manufacturer chooses to change the suppliers.
We present our methods within the framework of autonomic Web pro-
cesses. This framework seeks to add properties of self-configuration,
adaptation, and self-optimization to the traditional processes resulting
in more dynamic and agile Web processes. We adopt the paradigm
that an abstract Web process flow is pre-specified, and service man-
agers are tasked with interacting with the actual Web services. We
present two approaches for adapting the Web processes with depen-
dencies. In our first approach, we take a global view of the process,
and formulate a multi-agent Markov decision process (MDP) model
for controlling the service managers’ actions. We show that this ap-
proach is globally optimal; however, it does not scale well to mul-
tiple service managers in the process. In our second, decentralized
approach, each service manager performs its own decision making
using a MDP model and coordinates with others through an external
coordination mechanism. While this approach scales well to multi-
ple managers since each manager need not model the others’ states,
actions or costs, it’s not optimal. We provide a worst case bound for
the loss in optimality for this approach. We empirically evaluate our
methods using the supply chain problem, and report on their perfor-
mance.
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1. INTRODUCTION
Recently, there is a growing interest in utilizing Web services as

the key building blocks for creating inter- and intra-enterprise busi-
ness processes. Such business processes use the services-oriented ar-
chitecture [8] as a point of departure, and are called Web processes
[7]. Previous work on Web processes has focused largely on config-
uring or formulating the process flow [1, 9, 30, 31] and developing
the associated languages for representing the Web processes [22]. In
addition to the problem of composition of Web processes, we must
also address the challenges of adaptation, optimality, and recover-
ability. Together all of these properties contribute toward more agile
and dynamic Web processes. As an example, consider a supply chain
process where the manufacturer is awaiting merchandise that was or-
dered previously. If the shipment is considerably delayed, the manu-
facturer’s process flow must adapt to this event by possibly canceling
the order and choosing a different supplier.

In this paper, we address the problem of optimally adapting Web
processes to external events. We do this within the framework of
autonomic Web processes (AWPs) [29]. AWPs improve on the tra-
ditional Web processes by adding elements of self-adaptability, self-
optimality, and self-healing to the Web processes. In adopting this
framework, we are inspired by the principles of autonomic comput-
ing [15], and we seek to elevate the applicability of autonomic com-
puting from the infrastructure to the application level. Adaptation
in processes is further complicated in the presence of inter-service
dependencies. One cause of inter-service dependencies is when the
merchandise ordered at different points in the process must be com-
patible. For example, in a supply chain process that involves ordering
computer parts, RAM that is ordered from a memory chip provider
service must be compatible with the motherboard that is ordered from
another service. Hence, changing the Web service that provides RAM
(perhaps due to a delay in satisfying the order) must be coordinated
with a change in the Web service that provides the motherboard.

We present two methods for adapting the process in the face of ex-
ternal events and dependencies between participating Web services.
Both our methods adopt the paradigm that abstract process flows are
pre-defined and proxies, whom we call service managers, are used
to discover and interact with the required services. [4, 19]. Addi-
tionally, in both our methods we use stochastic optimization frame-
works called Markov decision processes (MDPs) [23]. The input to



our methods is a stochastic state transition machine which represents
the possible transitions for each service manager and costs of the tran-
sitions. In our first method, we adopt a global view of the process and
formulate a multi-agent MDP model for controlling the service man-
agers. This centralized approach guarantees that the adaptation in
response to external events, while respecting the inter-service depen-
dencies is globally optimal. However, this approach does not scale
well to a large number of service managers. To address the scalabil-
ity issue, we present a decentralized approach by formulating a MDP
model for each individual service manager in the process and a mech-
anism for coordinating between the service managers. However, this
approach is no longer globally optimal, and we provide a worst case
bound for the loss in optimality. We experimentally evaluate both our
methods using an example supply chain scenario. A natural avenue
of future work is to develop a hybrid approach that follows a mid-
dle path between the centralized and decentralized approaches. We
briefly outline one such hybrid approach and demonstrate that its per-
formance is better than the decentralized one.

The rest of the paper is organized as follows. In Section 3, we
give a brief overview of the framework of autonomic Web processes,
and introduce the supply chain example scenario in Section 4. We
then review our methods for configuring the pre-specified abstract
Web process. This forms the foundation for our work. In Sections 6
and 7, we present the centralized and decentralized approaches for
adapting Web processes in the presence of inter-service dependencies.
We empirically evaluate our methods using the supply chain example
in Section 8, review related work in Section 2, and conclude this paper
in Section 9. We briefly present an outline of a hybrid approach in the
Appendix.

2. RELATED WORK
Much of the earlier work on adaptation concentrated on manually

changing traditional processes at both the logic and instance levels.
In [16, 24] graph based techniques were used to evaluate the feasi-
blity and correctness of changes in the control flow of running in-
stances. Ellis et al.[10] used petri-nets for formalizing the instance
level changes. In a somewhat similar vein, Aalst and Basten [27]
proposed a petri-net based theory for process inheritance which cate-
gorized the types of changes that do not affect other interacting pro-
ceses. More recently, Muller et al. [21] used event-condition-action
rules to make changes in running instances. None of these papers
have considered the issue of long term optimality of the adaptation,
as we do with the help of stochastic optimization frameworks. Our
work also addresses the added complexity of inter-service dependen-
cies in a process. Isolated attempts to address inter-task dependencies
in processes include [5] in which dependencies at the transactional
level were enforced using scheduling. In this work, the focus was
on generating feasible schedules without emphasis on being optimal.
This and other works [17, 25] used task skeletons to represent the
transactional semantics of databases abd Web services. Our use of
probabilistic finite state machines (Markov chains) is a generalization
of the task skeletons as used previously.

3. AUTONOMIC WEB PROCESSES
In this section, we briefly introduce the autonomic Web process

framework. As we mentioned before, AWPs elevate the principles
of autonomic computing from the infrastructure level to the process
level. In doing so, AWPs seek to create a highly dynamic and agile
framework for Web processes, which will reduce process downtimes
and maintenance costs. We briefly sketch the desired properties of
AWPs and discuss the levels at which we support the properties in
this paper:

• Self configuring: AWPs must be able to configure themselves ei-
ther automatically or semi-automatically. Self configuration can be
defined at various levels for AWPs: it can include composing the en-
tire process from goals [26], or completing a pre-defined abstract pro-
cess at run time [2, 31]. In this paper, we start with an abstract process
flow and utilize integer linear programming (ILP) methods and a rule
engine for selecting the Web services at run time that satisfy the quan-
titative and logical constraints of the process.
• Self healing (Adapting): AWPs must be able to heal themselves
from physical and logical exceptions. This would include reconfig-
uring and adapting in response to such failures. Physical failures in-
clude failure of the process engine, the Web services or the communi-
cation infrastructure and the logical failures include domain specific
application level failures such as a delay in delivery of ordered goods
in a supply chain process. In this paper, we partially handle healing
by providing approaches for adapting from logical failures.
• Self optimizing: AWPs achieve their goals in the most cost-effective
and time-efficient manner. An important aspect of this property is the
ability to trade off short-term rewards (greed) with long-term opti-
mality. In addition, AWPs must reconfigure and adapt optimally to
a transient environment. Our use of stochastic optimization frame-
works such as MDPs enables us to guarantee long term optimality in
adaptation.

The architecture of AWPs consists of two main layers – the re-
sources and the autonomic managers. In Fig. 1, we show the archi-
tecture. The resource layer consists of the resources in the AWP such
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Figure 1: The primary components in an AWP.

as the process engine, the Web services, and the configuration mod-
ule. Each of the resources is controlled by a corresponding autonomic
manager. Each process instance, for example, is under the control of
an autonomic process manager (PM), which is responsible for con-
figuring the process with the help of the configuration module, lis-
tening to the various environment variables for changes and working
with the autonomic service managers (SMs) for adapting the process
in response to the external events and dependencies. Each partner
Web service interacts with a service manager (SM) rather than di-
rectly with the process instance. The configuration manager (CM) is
responsible for completing the abstract process by selecting the Web
services (from the discovered ones) that satisfy the quantitative and
logical constraints. As we mentioned before, this is done using ILPs
and rule-based inferencing.

4. EXAMPLE: SUPPLY CHAIN
Processes must continuously adapt to stimuli from a dynamic evi-

ronment to remain optimal. The adaptation is further complicated
when different parts of the process are inter-dependent and must co-
ordinate with each other. An example scenario that requires adapta-
tion while maintaining inter-service dependencies is the supply chain



process given below. Our supply chain scenario is a somewhat sim-
plified and selective version of the real world supply chain process
of Dell [14]. We also use the supply chain problem to illustrate our
approaches and evaluate them.

We consider the supply chain process of a computer manufacturer
which operates on minimal inventory (Fig. 2). The computer manu-
facturer typically orders in bulk different computer parts from multi-
ple suppliers. Since the parts must be assembled into a single com-
puter, they must be compatible with each other. For example, the
RAM must inter-operate with the motherboard. Therefore, if the
delivery of the RAM is delayed and the manufacturer chooses to
change the RAM supplier, the supplier of the motherboard must also
be changed to preserve the compatibility constraint. As an example
of the type of choice involved in this process, in deciding to order the
RAM from a new supplier the manufacturer must take into account
the consequences in terms of cost of ordering the motherboard from
a new supplier too. Of course, the cost of switching suppliers will
vary with the state of the process. For example, if the delivery of
the RAM is delayed and the motherboard has arrived, then a decision
to change the RAM supplier would entail returning back the mother-
board and changing the motherboard supplier. Such a decision might
prove more costly than waiting out the delay in receiving the RAM.
The problem is to adapt optimally to the external events like delay
while respecting the inter-service dependencies.

start

orderMB

orderRAM

assemble

Figure 2: The example supply chain process of a computer manufac-
turer. The process consists of two activities: order the RAM and the
motherboard. The dashed line (in red) denotes the requirement of prod-
uct compatibility.

5. PROCESS CONFIGURATION
Though the primary focus of this paper is on adaptation and coor-

dination, we briefly present our methods for configuring the abstract
process for the sake of completeness. We refer the interested reader
to [28] for more details. During configuration, as we mentioned pre-
viously, sets of Web services from among the discovered ones that
meet the quantitative and logical constraints of the process are ob-
tained. Examples of the quantitative constraints are cost and time,
and an example of the logical constraint is product compatibility.

5.1 Quantitative Constraints
In order to obtain the services that satisfy the quantitative con-

straints, we utilize an ILP method. Similar approaches have also been
used in [2, 31], though we differentiate ours by broadening the crite-
ria used for service selection. Specifically, we include external pa-
rameters such as supply time and cost of the products provided by the
services, in addition to the service invocation time and cost, and relia-
bility as used in [31]. We briefly illustrate the construction of the ILP
using our example scenario. For each activity in our process, we are
interested in selecting a service (out of the set of discovered services)
such that all the services together meet the quantitative constraints of
the process. Let Xij be the indicator variable that is 1 if service j is
selected for activity i among the N(i) discovered services, otherwise
0. In our example supply chain process, the manufacturer is faced
with the two activities of ordering a RAM and a compatible moth-
erboard. Let the total allowed cost of the process be 2000, and the
supply time be 10 units. The ILP for obtaining the services is:

Minimize∑M
i=1

∑N(i)
j=1 Cost(j) · Xij

∣∣∣∣∣∣∣∣∣

∑2
i=1

∑N(i)
j=1 Cost(j) · Xij ≤ 2000

∀i,jSupplyTime(j) · Xij ≤ 10∑2
i=1

∑N(i)
j=1 Xij = 2∑N(i)

j=1 Xij = 1, 1 ≤ i ≤ 2

5.2 Logical Constraints
The output of the ILP are multiple sets of services that meet the

quantitative constraints. In each set, there is one service for each
activity in the process. These sets are then checked to see if they
satisfy the logical constraints. The logical constraints may be non-
quantitative and are frequently derived from the domain knowledge.
Therefore, we employ a rule-based system to formulate the constraints
using domain knowledge and obtain the satisfying services. Since the
domain knowledge that forms a part of the logical constraints may
be represented using an ontology, we utilize a rule language called
SWRL [13]. SWRL provides a mechanism to use Horn logic like
rules over facts represented in OWL [20] ontologies.

For our example, the RAM and the motherboard purchased by the
manufacturer must be compatible with each other. The interested
reader may refer to [28] for the compatibility constraints formulated
using SWRL. This step generates the sets of services that not only sat-
isfy the quantitative constraints, but also meet the logical constraints.
The service managers may now invoke the corresponding services in
an appropriate manner from the set of services.

6. CENTRALIZED APPROACH: M-MDP
Our first approach adopts a global view of the Web process; we

assume the existence of a central process manager that is tasked with
the responsibility of controlling the interactions of the service man-
agers with the Web services. The advantage of adopting a centralized
approach to control is that we are able to guarantee global optimality
of the service managers’ decisions. We illustrate the approach using
Fig. 3

6.1 Model
We model the process manager’s decision problem as a multi-agent

Markov decision process (M-MDP) [6, 23]. Markov decision pro-
cesses (MDPs) are well known and intuitive frameworks for mod-
eling sequential decision making under uncertainty. In addition to
modeling the uncertainty that pervades real world environments, they
also provide a way to capture costs and thereby guarantee cost-based
optimality of the decisions. Multi-agent MDPs generalize MDPs to
multi-agent settings by considering the joint actions of the multiple
agents.

For the sake of simplicity, we consider two service managers, i
and j. Our model may be extended to more service managers in a
straightforward manner. We formalize the process manager as a M-
MDP:

PM = 〈S, PA, T, C, OC〉
where:
• S is the set of global states of the Web process. Often it is pos-

sible to define the global state using a factored representation where
the factors are the service managers’ local states.

DEFINITION 1 (FACTORED STATE). The global state space may
be represented in its factored form: S = Si × Sj . Here, each global
state s ∈ S is, s = 〈si, sj〉, where si ∈ Si is the local state (or the
partial view) of service manager i, and sj ∈ Sj is the local state of
service manager j.
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Figure 3: The process manager does the global decision making for
adaptation using the M-MDP model. We do not show the constraint anal-
ysis module here for clarity.

We assume that each service manager fully observes its own state,
but not the state of the other manager. Hence, we may characterize
the process as being locally fully observable.

DEFINITION 2 (LOCALLY FULLY OBSERVABLE). A process is
locally fully observable if each service manager fully observes its own
state, but not the state of the other manager.

Since the global state is factored with each manager’s local state as
its components, the process manager may combine the local observa-
tions so as to completely observe the global state.
• PA : S → P(A) where A = Ai × Aj is the set of joint actions

of all service managers and P(A) is the power set of A. The actions
may be invocations of Web service operations. PA(s) is the set of
permitted joint actions of the service managers from the global state,
s. Using Definition 1, we may decompose PA(s) as: PA(s) =
PAi(si) × PAj(sj) where PAi(si) and PAj(sj) are the sets of
permitted actions of the service managers i and j from their individual
states si and sj , respectively.
• T : S × A × S → [0, 1] is the Markovian transition function. It

captures the global uncertain effect of jointly invoking Web services
by the service managers. Since the actions of each service manager
affect only its own state and the global state space is factored, we may
decompose the global transition function into its components.

DEFINITION 3 (TRANSITION INDEPENDENCE). The global tran-
sition function, T (s′|s, a) where a ∈ PA(s), may be decomposed
into:

T (s′|s, a) = T (〈s′i, s′j〉|〈si, sj〉, 〈ai, aj〉)
= Pr(s′i|〈si, sj〉, 〈ai, aj〉, s′j) · Pr(s′j |〈si, sj〉, 〈ai, aj〉)
= Ti(s

′
i|si, ai) · Tj(s

′
j |sj , aj)

(1)
where Ti and Tj are the individual service manager’s transition func-
tions, ai ∈ PAi(si), aj ∈ PAj(aj), and s′i and s′j are the next states
of i and j, respectively. In other words, we assume that, Pr(s′i|〈si, sj〉, 〈ai, aj〉, s′j)

= Pr(s′i|si, aj), and Pr(s′j | 〈si, sj〉, 〈ai, aj〉) = Pr(s′j |sj , aj), be-
cause each service manager’s next state is influenced only by its own
action and and its current state.

• C : S × A → R is the cost function. This function captures
the global cost of invoking the Web services by the service managers
based on the global state of the process. These costs may be obtained
from the service level agreements [18] between the enterprise whose
process is being modeled and the service providers. In our example,
the cost function would capture not only the cost of invoking the Web
services, but also the cost of waiting for the delayed order or chang-
ing the supplier. As we mentioned before, the possible change of
supplier by one service manager must be coordinated with the other
service manager, to preserve the product compatibility constraints.
Coordination is enforced by incurring a very high global cost if only
one service manager changes its supplier. This high cost signifies the
penalty of violating the product compatibility constraint.
• OC is the optimality criterion. In this paper, we minimize the

expected cost over a finite number of steps, N , also called the hori-
zon. Additionally, each unit of cost incurred one step in the future is
equivalent to γ units at present. Naturally, γ ∈ [0, 1] and is called the
discount factor.

Let us utilize the multi-agent MDP formalism introduced previ-
ously, to model the supply chain process.

EXAMPLE 1. An example global state of the process is 〈OD̄C̄SR̄︸ ︷︷ ︸
i

,

ODC̄SR̄︸ ︷︷ ︸
j

〉. This global state denotes that service manager i has

placed an order but not yet received it nor has any indication of a
delay in receiving the order, and j has placed an order that has been
delayed. Neither have changed their suppliers. Possible actions for
each service manager are the same: Ai = Aj = { Order (O), Wait
(W), ChangeSupplier (CS) }. The action Order denotes the invo-
cation of the relevant Web service(s) of the chosen supplier to place
an order, Wait is similar to a no operation (NOP), and the action
ChangeSupplier signifies the invocation of the relevant Web services
to cancel the order or return it (if received), and discover a new com-
patible supplier. A partial cost function is shown in Table. 1, while the
transition function for an individual service manager is shown Fig. 5.

6.2 Exogenous Events
In our example supply chain scenario, the service manager must

act in response to several events such as a notification of delay from
the supplier and a notification of receipt of the order. In order to
ensure that the service manager responds to these events optimally,
they must be a part of our model. Since the events are external to the
Web process, we call such events as exogenous.

In order to model the exogenous events, we perform two steps: (1)
We specify expanded transition functions for the service managers i
and j. In other words, T E

i : Si ×Ai ×Ei ×Si → [0, 1], where Ei is
the set of mutually exclusive events, and rest of the symbols were de-
fined previously. For our example, Ei = {Delayed, Received, None}.
The expanded transition function models the uncertain effect of not
only the service manager’s actions but also the exogenous events on
the state space. We show the expanded transition function for the ser-
vice manager i in Fig. 4. (2) We define a’priori a probability distribu-
tion over the occurrence of the exogenous events conditioned on the
state of the service manager. For example, let Pr(Delayed|OD̄C̄SR̄
) = 0.45 be the probability that service manager i’s order for RAM is
delayed given that it has placed its order.

We obtain the transition function, Ti, that is a part of the model
defined in Section 6.1 (see Eq. 1), by marginalizing or absorbing the



State 〈W, W 〉 〈W, CS〉 〈CS, W 〉 〈CS, CS〉
〈OD̄C̄SR̄,OD̄C̄SR̄〉 0 550 550 350

〈OD̄C̄SR̄,ODC̄SR̄〉 200 450 750 250

〈OD̄C̄SR̄,OD̄C̄SR〉 0 550 550 350

〈OD̄C̄SR̄,ODC̄SR〉 0 460 550 260

〈ODC̄SR̄,OD̄C̄SR̄〉 200 750 450 250

〈ODC̄SR̄,ODC̄SR̄〉 400 650 650 150

〈ODC̄SR̄,OD̄C̄SR〉 200 750 450 250

〈ODC̄SR̄,ODC̄SR〉 200 710 450 160

〈OD̄C̄SR,OD̄C̄SR̄〉 0 550 550 350

〈OD̄C̄SR,ODC̄SR̄〉 200 450 750 250

〈OD̄C̄SR,OD̄C̄SR〉 -50 550 550 350

〈OD̄C̄SR,ODC̄SR〉 -50 460 550 260

〈ODC̄SR,OD̄C̄SR̄〉 0 550 460 260

〈ODC̄SR,ODC̄SR̄〉 200 450 460 160

〈ODC̄SR,OD̄C̄SR〉 -50 550 460 260

〈ODC̄SR,ODC̄SR〉 -50 460 460 170

Table 1: We show the partial cost function for the process manager. We show the costs for the more interesting actions of waiting out the
delay and changing the supplier for a subset of the states. The cost function penalizes those action combinations where only one service
manager changes the supplier thereby violating the product compability constraint.

si
1

si
8

si
2

si
6

si
5 si

4

si
7

si
3

W

W

W W

O

CS

Rec

Del

Rec

CS

O

CS

CS

O
O

0.45

0.35
0.85

Figure 4: A (probabilistic) state transition diagram illustrating the ex-
panded transition function, T E

i , for the service manager i. Transitions
due to actions are depicted using solid lines, and these are determinstic.
Exogenous events are shown dashed (in blue). For clarity, the occurence
of no event is not shown. The numbers denote example probabilities of
occurence of the events conditioned on the states.

events. Formally,

Ti(s
′|s, a) =

∑
e∈E

T E
i (s′i|si, ai, e)Pr(e|si)

Here, T E
i is obtained from step (1) and Pr(e|s) is specified as part

of the step (2) above. The marginalized transition function for the
service manager i is shown in Fig. 5.

6.3 Global Policy Computation
Solution of the process manager’s model described in Section 6.1

results in a global policy. The global policy is a prescription of the
optimal action that must be performed by each service manager given
the global state of the Web process and the number of steps to go.
Formally, a global policy is, π : S × N → A where S and A are as
defined previously, and N is the set of natural numbers. The advan-
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Figure 5: A (probabilistic) state transition diagram illustrating the tran-
sition function, Ti, for the service manager i. Some of the transitions due
to the actions are now non-deterministic. The numbers denote the proba-
bilities with which the associated transitions occur.

tage of a policy-based approach is that no matter what the state of the
process is, the policy will always prescribe the optimal joint action.
In order to compute the global policy, we associate each global state
with a value that represents the long term expected cost of perform-
ing the optimal policy from that state. Let V : S × N → R be the
function that associates this value to each state. We define the value
function recursively as:

Vn(s) = min
a∈PA(s)

Qn(s, a)

Qn(s, a) = C(s, a) + γ
∑
s′

T (s′|s, a)Vn−1(s
′) (2)

Note that ∀s∈S , V0(s) = 0, and T (s′|s, a) may be decomposed us-
ing Eq. 1. Here, n ∈ N is the finite number of steps to be performed.
The optimal joint action pair from each state is the one that optimizes
the value function:



π∗
n(s) = argmin

〈ai,aj〉∈PAi(si)×PAj(sj)

C(s, 〈ai, aj〉)+
γ

∑
s′i,s′j

Ti(s
′
i|si, ai)Tj(s

′
j |sj , aj)Vn(s′ = 〈s′i, s′j〉)

(3)

We note that the dynamic programming formulation presented above
is not the sole method for solving the M-MDP model. Linear pro-
gramming based formulations also exist [Puterman] for solving the
process manager’s model.

While the centralized approach requires the specification of a global
model for the service manager, the advantage is that we can guaran-
tee the optimality of the global policy. In other words, no other pol-
icy for controlling the service managers exists that will incur an ex-
pected cost less than that of the global policy calculated using Eq. 3.
Consequently, the global policy resolves the coordination problem
between the service managers in an optimal manner. Theorem 1 for-
mally states this result.

THEOREM 1 (GLOBAL OPTIMALITY). The global policy of the
process manager, π∗

n, calculated using Eq. 3 is optimal for the finite
horizon discounted optimality criterion.

PROOF. The proof of this theorem is by induction on the horizon
and is a straightforward extension of a similar proof for MDPs [23]
to the multi-agent setting. We briefly sketch this proof here. For the
basis step, n = 1. From Eq. 3, the global policy is the joint action that
minimizes the cost function. Let us assume that the theorem is true
upto arbitrary horizon, n = 1...N − 1. Let π′

N be some other policy
which does better than π∗

N . Therefore, π′
N incurs a lower expected

cost for some intermediate stage n < N . But from Eq. 3 and the
inductive hypothesis, this is a contradiction.
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Figure 6: Example coordination graphs. (a) The worst case coordination
graph where all the service managers must coordinate with each other. (b)
More realistic case, where only subsets of service managers must coordi-
nate with each other.

Let us consider a Web process where there are, M > 2, service
managers. In the worst case, all the service managers may have
to coordinate with each other due to, say, the product compatibil-
ity constraints (Fig. 6(a)). For this case, Eq. 2 becomes, Vn(s) =

min
a∈PA(s)

Qn(s, a), where a ∈ A, and A = Ai×Aj ×Ak× . . .×An.

Here, Ai, Aj , . . . , An are the action sets of the service managers
i, j, k, . . . , n, respectively. More realistically, only subsets of the
service managers may have to coordinate with each other, as shown
in Fig. 6(b). In this case, Vn(s) = min

a
Q1

n(s, 〈ai, aj , ak, al〉) +

Q2
n(s, 〈am, an〉) = min

〈ai,aj ,ak,al〉
Q1

n(s, 〈ai, aj , ak, al〉) + min
〈am,an〉

Q2
n(s, 〈am, an〉).

7. DECENTRALIZEDAPPROACH:MDP-COM

While adopting a global view of the process guarantees a globally
optimal adaptation and coordination between the service managers,
the approach does not scale well to many services in the process.
This is because the decision making by the process manager must
take into account the possible actions of all the coordinating service
managers. Of course, this is exponential in the number of service
managers. As we mentioned previously, in the worst case this might
involve all the service managers. In this section, we present a de-
centralized approach that scales reasonably well to multiple services,
but in doing so we lose the global optimality of the adaptation. This
approach is made possible due to the properties of transition indepen-
dence and local full observability exhibited by the process.

Our approach is based on formulating a MDP model for each in-
dividual service manager, thereby allowing each service manager to
make its own decision. We assume that all the service managers act
at the same time, and actions of the other service managers are not
observable. Since coordination between the service managers that
reflects the inter-service dependency is of essence, we define a mech-
anism for ensuring the coordination. Each service manager, in addi-
tion to fully observing its local state, also observes the coordination
mechanism perfectly (Fig. 7).
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Figure 7: Each service manager locally decides its action in response to
the exogenous events. The service managers coordinate using a coordina-
tion mechanism that each observes perfectly. We again do not show the
constraint analysis module here for clarity.

7.1 Model
We model each service manager’s decision making process as a

MDP [23]. The MDP model for a service manager, say i, is:

SMi = 〈Si, PAi, Ti, Ci, OCi〉
While many of the parameters were introduced previously, we again
present them here formally:
• Si is the set of local states of the service manager i.
• PAi : Si → P(Ai), where P(Ai) is the power set of i’s actions.

This function gives the permissible actions of the service manager for



each of its local states. An action may be the invocation and use of a
Web service.
• Ti : Si × Ai × Si → [0, 1], is the local Markovian transition

function. The transition function gives the possibly uncertain effect
of performing a permitted action from some state.
• Ci : Si ×Ai → R, is the service manager i’s cost function. This

function gives the cost of performing an action from some state of the
service manager.
• OCi is the service manager i’s optimality criterion. In this pa-

per, we assume that each of the service managers optimizes w.r.t. a
discounted finite horizon, though in general they could have different
optimality criteria.

For our supply chain example, the MDP for the service manager i
is given below.

EXAMPLE 2. An example local state of the service manager is
ODC̄SR̄ which denotes that i has placed an order that has been
delayed, but it has not changed its supplier. Possible actions for the
service manager i are: Ai = { Order (O), Wait (W), ChangeSup-
plier (CS) }. The semantics of these actions are as defined previously
in Example 1. The transition function was shown previously in Fig. 5,
and the cost function is shown in Table. 2.

State W CS

OD̄C̄SR̄ 0 200

ODC̄SR̄ 250 150

OD̄C̄SR -50 250

ODC̄SR -50 175

Table 2: A partial cost function for the service manager i.

The exogenous events that include a delay in receiving the order
and a notification of receipt of the order, are handled in a similar
manner as described in Section 6.2. In other words, we expand the
service manager’s local transition function to include the events. As
we mentioned before, the events may alter the local state of the ser-
vice manager.

7.2 Coordination Mechanism
In our decentralized approach, each service manager arrives at its

own decision on how to best respond to the exogenous events. Since
the decision making is local, we must define a mechanism to ensure
coordination between the service managers in order to preserve the
product compatibility constraint. As an example, if the service man-
ager that is ordering RAM decides to change its supplier, then the
service manager ordering the motherboard must follow suit, no matter
whether it’s an optimal decision for the other service manager. This
is precisely the source of the loss in optimality for our decentralized
approach.

Mechanisms for coordinating between the service managers mani-
fest in various forms. A natural mechanism for coordination is com-
munication among the service managers. For example, service man-
ager i could let the other service manager know of its intent to change
its supplier. Such coordination mechanisms among players have been
previously explored in game theory [11, 12]. In utilizing communica-
tion, the model must account for imperfect communication channels,
the cost of communicating, and what needs to be communicated. An
alternate mechanism for ensuring coordination is a finite state ma-
chine (FSM), whose state is perfectly observable to all the service
managers. We may define the FSM to have two general states: an
uncoordinated (U) state and a coordinated (C) state. The state of the
FSM signifies whether the service managers must coordinate.

In this paper, we adopt the latter coordination mechanism. For-
mally, the FSM is a tuple 〈Y, A, τ〉, where Y is the set of states of

the FSM, Y = {U, C}. A is the set of joint actions of the service
managers defined previously. Here, τ : Y × A × Y → [0, 1] is
the transition function of the FSM. Initially the actions of the service
managers are uncoordinated. We assume that if a service manager
decides to change the supplier, it must signal its intent first. 1 When
any service manager signals its intent to change the supplier, the FSM
transitions to the coordinated state. When the FSM is in this state, all
service managers are required to change their suppliers immediately.
Their actions will also reset the FSM back to the uncoordinated state.
We show the FSM in Fig. 8.

U C

 < intent,* > ; < *,intent >

< *,* >

< CS , CS >

< ?,? >

< * , * >

Figure 8: A FSM for coordinating between the service managers. Tran-
sitions (solid arrows) are caused by the joint actions of the service man-
agers i and j. ’*’ indicates any action of a service manager, while ’?’
indicates the remaining actions. The dashed arrow indicates the action
choice for each service manager when the FSM is in that state.

7.3 Expanded Model
Naturally, the coordination mechanism must be included in the ser-

vice manager’s decision making process. We do this by combining
the MDP model that was defined previously in Section 7.1, with the
coordination mechanism and call the new model, MDP-CoM. Within
the MDP-CoM, the state space is expanded to include the states of the
coordination mechanism as well: Ŝi = Si × Y . The action choices
available to the service manager are, A′

i= Ai ∪ {Intent}. To ensure
that the service manager changes the supplier iff the FSM is in the co-
ordinated (C) state, we define the function, P̂Ai(〈∗, C〉) = CS, and
remove the choice of changing the supplier when the FSM is in the
uncoordinated state, P̂Ai(〈si, U〉) = PAi(si)/CS, Here, ’*’ stands
for any local state of the service manager i.

The transition function is the joint defined as: T̂i : Ŝi×Ai× Ŝi →
[0, 1]. Here,

T̂i(〈s′i, y′〉|ai, 〈si, y〉) = Pr(s′i|y′, ai, 〈si, y〉)Pr(y′|ai, 〈si, y〉)
= Ti(s

′
i|ai, si)Pr(q′|ai, y)

Since the next state of the FSM depends on actions of both the ser-
vice managers, and the service manager i does not observe the other
service manager’s actions, we must average over the other’s actions.

T̂i(〈s′i, y′〉|ai, 〈si, y〉) = Ti(s
′
i|ai, si)

∑
aj

Pr(y′|ai, aj , y)

× Pr(aj |ai, y)
= Ti(s

′
i|ai, si)

∑
aj

τ(y′|ai, aj , y)Pr(aj |y)

(4)
When the state of the FSM is C, the service manager i knows

that everyone must change their respective suppliers, and therefore
Pr(aj = CS|C) = 1. On the other hand, when the state is U , we
assume that i has no knowledge of the other’s decision making model
and therefore assumes that each of service manager j’s actions are
equally probable. The cost function, Ĉi : Si × Ai → R, gives the
cost of acting from the combined local state and the state of the FSM.
However, for our purposes, the state of the FSM does not matter in
deciding the cost.

1This behavior would require an additional action denoting the intent.



7.4 Local Policy Computation
We associate with each local state of the service manager and the

state of the coordination mechanism, a value function that gives the
expected cost of following an optimal policy from that state. Let V̂ i :
Ŝi × N → R be the value function, where N is the set of natural
numbers and denotes the number of steps to go. Then it is defined as:

V̂ i
n(〈si, y〉) = min

ai∈P̂Ai(〈si,y〉)
Qi

n(〈si, y〉, ai)

Qi
n(〈si, y〉, ai) = Ci(si, ai) + γ

∑
〈s′i,y′〉 T̂i(〈s′i, y′|ai, 〈si, y〉)

×V̂ i
n−1(〈s′i, y′〉)

(5)
Here, ∀si, q V̂ i

0 = 0, and T̂i(〈s′i, q′|ai, 〈si, q〉) may be decom-
posed as shown in Eq. 4. The optimal policy for the MDP-CoM model
is then calculated as follows:

πi(〈si, y〉) = argmin
ai∈P̂Ai(〈si,y〉)

Ci(si, ai) + γ
∑

〈s′i,y′〉 Ti(s
′
i|ai, si)

∑
aj

τ(y′|ai, aj , y)Pr(aj |y)V̂ i
n−1(〈s′i, y′〉)

(6)
While the decentralized approach scales well for multiple service

managers since each service manager within the process does its own
decision making, the tradeoff is our inability to guarantee global op-
timality. This is because, a service manager’s decision does not take
into account the state, actions, and costs of the other service manager.
For the supply chain example, service manager i’s decision to change
the supplier would necessitate a change of supplier for j as well ir-
respective of the fact that the action may not be optimal for j. We
calculate a bound for the error that would be introduced in this case.
Let εn be the error bound, then, εn = ||V i

n − V̂ i
n||∞, where || · ||∞

is the supremum norm, V i
n is the value function for the MDP model,

and V̂ i
n is the value function for the MDP-CoM model. Let si be the

state where the worst error incurs. Then εn = V i
n(si)− V̂ i

n(〈si, C〉).
Since in the worst case, changing the supplier from the state si might
result in the worst possible behavior, εn is the difference between the
expected costs of the best and the worst possible plans. The difference
can be bounded by realizing that the value functions for policies that
always incur the least costs, Ci,min, and the most costs, Ci,max, form

a geometric progression. This leads to εn =
(Ci,max−Ci,min)(1−γn)

1−γ
.

This is the maximum loss in optimality a service manager suffers in
trying to respect the product compability constraint within the MDP-
CoM model.

In order to calculate the loss with respect to the globally optimal
policy, we need a way to relate the local cost functions to the global
cost function, defined in Section 6.1. For the simple case where
C(s, a) = Ci(si, ai) + Cj(sj , aj), the error bound εn also repre-
sents the worst case loss from global optimality. We note that this er-
ror bound does not scale well to many service managers. In general,
for M service managers, the worst case error bound is (M − 1)εn.

8. EMPIRICAL EVALUATION
We empirically evaluate our methods using the supply chain ex-

ample introduced in Section 4. We implemented all of the models
within the METEOR-S framework for Web processes [30, 2]. In
this framework the manufacturer’s process flows are represented us-
ing BPEL4WS [22] and the supplier Web services are represented
using WSDL-S [3].

As part of our evaluation, we first show that the value function of
the M-MDP model (Eq. 2 in Section 6) is monotonic and converges
over an increasing number of horizons. Naturally, this implies that the
policy, π, of the process manager also converges. The convergence

is reflected by the gradual flattening of the curves in the plot shown
in Fig. 9. Though we show the value function for a subset of the
states, this behavior is true for all the states. Additionally, a similar
convergence is demonstrated by the value function of the MDP-CoM
model as well.
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Figure 9: Convergence of the value function of the M-MDP model.

The second part of our evaluation focuses on studying the adaptive
behaviors of our models in environments of varying volatility. These
environments are characterized by increasing probabilities of occur-
rence of an external event such as a delay, and increasing penalties
to the manufacturer for waiting out the delay. Our benchmark (null
hypothesis) is a policy in which each service manager randomly se-
lects between its action choices, and if it elects to change the supplier,
then all service managers follow suit to ensure product compatibility.
We denote this policy as the random policy in our experiments. Our
methodology consisted of plotting the average costs incurred by exe-
cuting the policies generated by solving each of the models for differ-
ent probabilities of receiving a delay event and across different costs
of waiting out a delay. The costs were averaged over a trial of 1000
runs and each such trial was carried out 10 times.

In addition to the centralized (M-MDP), decentralized (MDP-CoM),
and the random policies, we include a hybrid approach as part of our
experiments. The hybrid approach uses the MDP-CoM model as a
point of departure, but improves on its error bounds by allowing the
process manager to step in and exercise some control over the ser-
vice managers’ actions when coordination is required. For example,
when any service manager intends to change the supplier, the pro-
cess manager decides whether or not to allow the action based on its
global optimality for all the service managers. This is unlike the de-
centralized approach where an intent to change the supplier by any
one service manager resulted in everyone changing their suppliers (to
enforce product compatibility). The formalization of the hybrid ap-
proach is currently in progress (see Appendix for an outline of the
approach), but we include the experimental results here due to their
promising nature.

We show the plots for the different costs of waiting in case of a
delay in Fig. 10. We computed all of our policies for 25 steps to go.
When the cost of waiting for each service manager in response to a
delay is low, as in Fig, 10(a), all of our models choose to wait out the
delay. For example, π∗

n (〈ODC̄SR̄, ODC̄SR〉) = 〈W, W 〉, and
πi

n(〈ODC̄SR̄, U〉) = πj
n(〈ODC̄SR̄, U〉) = W . Of course, the ran-

dom policy incurs a larger average cost since it randomizes between
waiting and changing the suppliers. When the penalty for waiting out
the delay is 300 which is greater than the cost of changing the sup-
plier (Fig. 10(b)), the behaviors of the different models start to differ.
Specifically, due to its global view of the process, the M-MDP model
does the best – always incurring the lowest average cost. For low
probabilities of the order being delayed, the M-MDP policy chooses
to change the supplier in response to a delay, since it’s less expen-
sive in the long term. However, as the chance of the order being
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Figure 10: Line plots showing the average costs incurred for increasing probabilities of the order being delayed and increasing costs of waiting for the
order in response to the delay.

delayed increases, the M-MDP policy realizes that even if the service
managers change the suppliers, the probability of the new suppliers
getting delayed is also high. Therefore it is optimal for the service
managers to wait out the delay for high delay probabilities. The per-
formance of the MDP-CoM reflects its sub-optimal decision-making.
In particular, it performs slightly worse than the random policy for
low delay probabilities. This is due to the service manager i always
choosing to change the supplier in response to the delay and the coor-
dination mechanism ensuring that the service manager j changes its
supplier too. For states where j has already received the order, this
action is costly. Note that the random policy chooses to change the
supplier only some fraction of the times. For larger delay probabil-
ities, the MDP-CoM policy adapts to changing the supplier in case
of a delay, and hence starts performing better than the random pol-
icy. The performance of the hybrid approach is in between that of the
M-MDP and the MDP-CoM models, as we may expect. By selecting
to change the suppliers only when it is optimal globally, the hybrid
approach avoids some of the pitfalls of the decentralized approach.
For an even larger cost of waiting out the delay, as in Fig. 10(c), the
MDP-CoM policy chooses to change the supplier up to a delay prob-
ability of 0.5, after which the policy chooses to wait when delayed.
From this point onwards, it incurs the same average cost As we men-
tioned previously, a large delay probability means that the expected
cost of changing the supplier is large since the new supplier may also
be delayed with a high probability. Hence, the policy chooses to wait
out the delay, rather than change the supplier and risk being delayed
again.

In summary, the centralized M-MDP model for the process man-
ager performs the best since it has complete knowledge of the states,
actions, and costs of all the service managers. This supports our The-
orem 1. The MDP-CoM does slightly worse than the random policy
for low delay probabilities, but improves its performance thereafter.
The maximum difference between its average behavior and that of the
globally optimal M-MDP model is 234.8 which is much less than the
difference calculated using our theoretical error bound, εn = 2784.6.
This is because of the worst case nature of our error bound analysis.
The hybrid approach does better than the MDP-CoM and the random
policy, but worse than the M-MDP as we expected. We also point out
that the percentage improvement of our M-MDP model in compari-
son to the random policy ranges between 31.3% and -9.4% 2.

Finally, we address the scalability of our models to larger number
of service managers. We show the time taken to solve the different
models in a histogram plot, Fig. 11, for increasing number of ser-
vice managers. As we mentioned previously, the complexity of the
M-MDP model is exponential with respect to the number of service

2Since the experiment involves random numbers, we may expect the
random policy to do better than the M-MDP policy in some runs.
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Figure 11: Run times for solving the models and generating the policies.
The times were computed on a PIV 3GHz, 1 GB RAM, and Win XP.

managers. This is demonstrated by the large increases in time taken
for computing the M-MDP policy as the number of service managers
increases from 2 to 5. In comparison, the time taken to solve the
MDP-CoM and the hybrid models increases only moderately. For the
latter models, we report the total time taken to solve for all the service
managers. More realistically, for the decentralized and the hybrid ap-
proaches, the models for the service managers may be solved in par-
allel, and hence there is no increase in the net run times. Note that
the coordination mechanism also scales well to multiple service man-
agers. Specifically, no increase in the number of states of the FSM is
required for more service managers.

9. CONCLUSION
As businesses face more dynamism and processes become more

complex, methods that address adaptation while preserving the com-
plex inter service dependencies have gained importance. Past ap-
proaches to this problem have tackled either adaptation to exogenous
events or enforcing inter-service dependencies, but not both. Addi-
tionally, these approaches have shied away from optimality consid-
erations. In this paper, we presented a suite of stochastic optimiza-
tion based methods for adapting a process to exogenous events while
preserving simple inter-service dependencies. These methods were
presented within the framework of autonomic Web processes. In our
first method, we adopted a global view of the process and formu-
lated the M-MDP model that guaranteed global optimality in adapt-
ing while preserving the inter-service dependencies. To address the
scalability issue, we presented a decentralized approach, MDP-CoM,
and bounded its loss of optimality. We experimentally evaluated their
performances in environments of varying dynamism.

A logical path for future work is to synergistically combine the two
approaches so as to promote scalability as well as curtail the worst
case loss of optimality. We briefly outlined one such hybrid approach,



and intend to formalize it further.
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APPENDIX

Outline of the Hybrid Approach
As part of our hybrid approach, each service manager, say i, solves its
own policy, πi

n, according to Eq. 6. It differs from the decentralized
approach in that we augment the FSM (Fig. 8) used in the decentral-
ized MDP-CoM model with guards resulting in a guarded FSM. The
guards are conditions that must be satisfied to permit the correspond-
ing transition in the FSM. We use the guards to represent the decision
making of the process manager when coordination due to the inter-
service dependency is required. In our supply chain scenario, if any
service manager intends to change the supplier, the process manager
steps in and decides if all the service managers are better off changing
their suppliers. If this is not the case – one or more orders may have
already been received – then the process manager instructs the service
manager to instead wait out the delay. We show the guarded FSM in
Fig. 12. By utilizing global information (action values of all the ser-
vice managers) when coordination is required, our hybrid approach
improves on the worst case behavior of the decentralized approach.

U

C2

 < intent,* > ; < *,intent >

< *,* >

< CS , CS >

< ?,? >

< * , * >

Qn
i(<si,C>,CS) + Qn

j(<sj,C>,CS) >=
Qn

i(<si,U>,W) + Qn
j(<sj,U>,W)

C1

 < intent,* > ; < *,intent >

< *,* >

Qn
i(<si,C>,CS) + Qn

j(<sj,C>,CS) <
Qn

i(<si,U>,W) + Qn
j(<sj,U>,W)

< W , W >

Φ

Φ

Φ

Figure 12: A guarded FSM as the coordination mechanism in the hybrid
approach. The guards are evaluated by the process manager when any of
the service manager signals its intent to change the supplierif the order is
delayed. The function Qi

n(·) was defined in Eq. 5. Rest of the notation is
as defined before.

We are currently in the process of formalizing the hybrid approach.
The primary issue that needs to be addressed is the modeling of the
communication between the service and process manager for sending
the Q-values.


