
OpenWS-Transaction: Enabling Reliable Web Service
Transactions

Ivan Vasquez, John Miller, Kunal Verma, Amit Sheth

Large Scale Distributed Information Systems
Department of Computer Science

The University of Georgia
415 Graduate Studies Research Center

Athens, GA 30602-7404 USA
{vasquez, jam, verma, sheth}@cs.uga.edu

http://lsdis.cs.uga.edu

Abstract. OpenWS-Transaction is an open source middleware that enables
Web services to participate in a distributed transaction as prescribed by the
WS-Coordination and WS-Transaction set of specifications. Central to the
framework are the Coordinator and Participant entities, which can be integrated
into existing services by introducing minimal changes to application code.
OpenWS-Transaction allows transaction members to recover their original state
in case of operational failure by leveraging techniques in logical logging and
recovery at the application level. Depending on transaction style, system recov-
ery may involve restoring key application variables and replaying uncommitted
database activity. Transactions are assumed to be defined in the context of a
BPEL process, although other orchestration alternatives can be used.

1 Introduction

OpenWS-Transaction is a middleware framework based on WS-Coordination (WS-
C) and WS-Transaction (WS-T) that enables existing services to meet the reliability
requirements necessary to take part in a coordinated transaction. For transactions
following WS-AtomicTransaction (WS-AT), it features an innovative recovery facil-
ity that applies logical logging to restore operations on the underlying data, extending
system recovery to include uncommitted database activity. For transactions following
WS-BusinessActivity (WS-BA), it presents a straightforward scheme to automate the
invocation of user-defined compensating actions. In contrast to existing implementa-
tions, OpenWS-Transaction aims to minimize the implementation impact in existing
applications with regards to both performance and code changes.

The framework has been implemented as part of the METEOR-S project, which
deals with adding semantics to the complete lifecycle of Web services and processes
[1]. As a prototype implementation of transactional Web processes, it is particularly
focused on integrating BPEL, WS-C and WS-AT/WS-BA [2, 3], which already enjoy
wide acceptance.

http://www-128.ibm.com/developerworks/library/specification/ws-tx/

The next section explains the framework’s architecture. Section 3 describes an ex-
ample scenario where OpenWS-Transaction enables reliable transactional business
processes. Section 4 provides implementation and evaluation details, while section 5
summarizes this demonstration.

2 Architecture

OpenWS-Transaction applies concepts from the reference specifications as well as
from existing work on fault tolerant systems [4, 5]. Fig. 1 illustrates the interaction
between a BPEL process, the Coordinator, and other services that benefit from the
Participant framework entity. Any activities performed within the transactional scope
are guaranteed to complete consistently.

Fig. 1. Entities and their interaction in a transactional business process

Coordinators are dedicated services responsible for delineating new transactions,
activating participant services and enforcing transactional behavior according to some
coordination type. To support recovery, they also record key events throughout the
transaction’s lifespan using the logging schema shown in Fig. 2. Besides the opera-
tions prescribed by WS-C, WS-AT and WS-BA, the recover operation restores the
state of pending transactions when interrupted by an operational failure.

Many services are the result of evolved applications that have defined an addi-
tional layer exposing select functionality to business partners. To take part in a dis-
tributed transaction, conventional services can use the features provided by the Par-
ticipant framework entity. Among such features is the ability to intercept and record

operation details, guaranteeing a precommit behavior regardless of the underlying
database system. Using the schema in Fig. 3, their recover operation enables transac-
tion participants to go back to the state immediately previous to a failure.

Transactions

PK txID

status

MessagePart

PK seq
PK,FK1 txID

partName
partType
value

Participants

PK,FK1 txID
PK endpoint

Operations

PK txID
PK operation
PK endpoint

outcome
sql

SqlParams

PK,FK1 txID
PK,FK1 operation
PK,FK1 endpoint
PK seq

dataType
direction
value

Fig. 2. Coordinator log schema Fig. 3. Participant log schema

3 Example of a Transactional Process

We use a variation of the well-known travel agency use case. The process encom-
passes three services: A flight reservation system, a hotel reservation system and a
banking system. The process is triggered from a Web application in which the user is
given options for an immediate purchase (WS-AT) or a long-running process (WS-
BA) that increases the chance of finding a suitable itinerary.

In the process definition, service invocations are enclosed by beginTransaction
and endTransaction calls to the coordinator, which delimit the transaction’s scope.
Before performing any work, participants register with the coordinator by providing
their endpoint address, which is logged to stable storage to support system recovery.

As soon as participants fulfill their part of the process, the framework logs the op-
eration’s name and outcome. For WS-AT, it also logs associated database calls and
their parameters, critical to restore uncommitted activity in case of failure. Once op-
erations are recorded, participants report their outcome to the coordinator.

Process execution continues until the endTransaction operation is invoked. This
causes the coordinator to decide the transaction’s final outcome, which depends on
participant votes and current coordination type: For WS-AT, all steps of the process
must succeed. For WS-BA, we assume that just reserving the flight and processing its
payment is enough to consider it successful; however, because of its nature, services
must supply an appropriate compensating operation for every business operation.

Following outcome determination, the coordinator updates its transaction log re-
cord and confirms or cancels each operation. Participants then forget about the trans-
action and the process engine communicates its outcome to the client application.

Responding to Operational Failures. Next, we modify the above scenario by in-
troducing an operational failure (Fig. 4) after the transaction outcome has been de-
termined. Assuming a positive outcome and WS-AT coordination type, participants
are responsible to commit despite failures. However, these failures cause volatile state

information to vanish and, because applications are unaware of the global process,
local transactions are implicitly rolled back.

Fig. 4. A failed transactional process where one of its participants crashed

If that is the case, OpenWS-Transaction’s coordinator attempts to contact the failed
service for a configurable number of times and retry interval. Assuming it becomes
available on time, the coordinator first invokes the participant’s recover operation,
which restores key application variables such as transaction identifier, coordination
type and operation outcomes. Additionally, recovery also restores the participant’s
database connection and replays database activity for uncommitted operations (Fig.
5), leaving it ready to accept the final decision.

Fig. 5. Participant replaying a database procedure as part of system recovery

Yet another recovery scenario is one in which the coordinator itself goes down in the
middle of a process, leaving pending operations at multiple participants. Upon restart,
the coordinator scans its log records forward in time, looking for unfinished transac-
tions. State is then restored by polling registered participants on their prepare opera-
tion. If a participant is not available or does not seem to know about the transaction, it
is asked to recover beforehand.

The framework takes into account the effects of network failures. Before perform-
ing recovery, participants check whether it is really needed by verifying the local
coordination context. An additional check is done by validating participant registra-
tion at the coordinator, so recovery can not occur as the result of erroneous or mali-
cious requests.

4 Implementation and Evaluation

The framework was implemented in Java and relies exclusively on open source pro-
jects. Web services run on Apache Axis and Tomcat. Transaction logging is based on
BerkeleyDB, an embedded database system. Sample processes are deployed in Ac-
tiveBPEL. Web services access data on PostgreSQL and MySQL; other JDBC-
accesible sources like Oracle and SQL Server have also been tested successfully.

Evaluating the impact on existing services, we found that the framework can be
integrated into existing services by introducing changes to as few as a couple lines of
code. Because protocol operations are invariably the same, developers of new appli-
cations can remain focused on their business logic.

Experimentation has shown that, even without logging optimizations, the addi-
tional overhead results in an average 7.5% increase over the operations’ original
execution times.

5 Conclusion

OpenWS-Transaction is a framework that facilitates the implementation of Web ser-
vice-based processes requiring transactional behavior. Example scenarios demon-
strate its transactional support under normal and operational failure conditions,
achieved by providing the necessary protocol operations and by restoring the state of
failed services.

References

1. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services
Standards. Proceedings of the 1st International Conference on Web Services (2003)

2. Tai, S., Khalaf, R., and Mikalsen, T.: Composition of Coordinated Web Services. Proceed-
ings of the 5th ACM/IFIP/USENIX intl. conf. on Middleware (2004)

3. Papazoglou, M.: Web Services and Business Transactions. World Wide Web: Internet and
Web Information Systems, Tilburg University (2003)

4. Lomet, D. and Tuttle, M.: Logical Logging to Extend Recovery to New Domains. Proc. of
the 1999 ACM SIGMOD intl. conf. on Management of Data (1999)

5. Salzberg, B. and Tombroff, D.: Durable Scripts Containing Database Transactions. IEEE
International Conference on Data Engineering (1996)

