
SIMULATION MODELING WITHIN WORKFLOW TECHNOLOGY

John A� Miller

Amit P� Sheth

Krys J� Kochut

Xuzhong Wang

Arun Murugan

Department of Computer Science�LSDIS Lab
The University of Georgia

Athens� Georgia �������	�	� U�S�A�

ABSTRACT

This paper presents an approach for integrating sim

ulation modeling and analysis capabilities within the
Work�ow Management System �WFMS being de

veloped in the Large Scale Distributed Information
Systems �LSDIS Lab at the University of Georgia�
Simulationmodeling can be used for studying the e�

ciency of work�ow designs as well as studying the gen

eral performance and reliability of WFMSs� We also
discuss the importance of using sophisticated mon

itoring and animation capabilities� and the use of
work�ow management technology to advance simu

lation technology itself� Finally� we demonstrate a
sample simulation where tasks and task managers are
simulated�

� INTRODUCTION

Competition and economic pressures force modern
business corporations to look for new information tech

nologies to support their business process manage

ment� Since work�ow technology provides a model
for business processes� and �a foundation on which to
build solutions supporting the execution and manage

ment of business processes� �Hsu and Kleissner ����
it has been receiving much attention in the past few
years� A work�ow is simply a set of tasks that co

operate to implement a business process� Work�ow
also provides a way to integrate legacy systems and
make good use of past investments in an enterprise in
a way that matches the demands of today�s rapidly
evolving and unpredictably �uctuating enterprises�

In this paper� we focus on the use of simulation
modeling and analysis within work�ow technology�
A work�ow model can be used to design automated
or semi
automated solutions for certain business pro

cesses within an enterprise� Work�ow models tend
to be more computer
oriented than traditional busi

ness process models� Consequently� they better fa

cilitate automatic generation of substantial portions

of actual solutions �i�e�� executable work�ows� Just
as the ability to produce simulations from business
process models has been found to be useful� we be

lieve that this ability is more important for work�ow
models� In particular� if a spectrum of simulation ap

proaches are provided� one could perform simulations
analogous to those done using business process mod

els today as well as perform a variety of ever more
detailed simulations leading all the way up to an ac

tual work�ow implementation� Once a work�ow is in
place� simulation will remain useful for reengineering
the work�ow and for exploring what
if questions� In
addition� the associated monitoring�animation facili

ties can assist in debugging and tuning work�ows as
well as understanding and administering work�ows�
This paper states the case and illustrates through
simple examples how this could be done�

The history of work�ow technology dates back to
o�ce automation and batch processing in the late
���s �Kappel� Schott� and Retschitzegger ����� In
recent years� work�ow technology has gained in pop

ularity due to the trend of business process reengi

neering and many emerging related technologies such
as middleware and object
oriented technology� which
make the development of a realistic work�ow man

agement system possible� An overview of work�ow
management system is provided in �Georgakopoulos�
Hornick� and Sheth ���� �see Sheth�s tutorial on
http���optimus�cs�uga�edu�� After several years of
development� many work�ow products are now avail

able �e�g�� FlowMark�IBM� ObjectFlow�DEC�
Sta�ware�Sta�ware Corp�� FloWare�Recognition Int��
Action Work�ow�Action Tech�� and MultiTrac�Post
Industrial Computing Systems�

A work�ow is composed of multiple tasks� There
are two types of tasks � simple tasks which repre

sent individual indivisible activities� and compound
tasks which represent some activities which can be
divided into sub
activities �simple tasks or even other
compound tasks� An entire work�ow can be re

garded as a large compound task� A simple task



may be a program which can run on processing enti�
ties� which include application systems� servers sup

ported by client
server systems or Transaction Pro

cessing Monitors �TP
Monitors� DataBase Manage

ment Systems �DBMSs� etc� Tasks are operations
or a sequence of operations that are submitted for
execution at the processing entities using their in

terfaces� A Work�ow Management System �WFMS
provides �the ability to specify� execute� report on�
and dynamically control work�ows involving multi

ple humans and HAD �Heterogeneous� Autonomous�
and Distributed systems� �Krishnakumar and Sheth
����� For work�ow execution� a work�ow scheduler
is necessary to enforce inter
task dependencies� and
therefore� to coordinate the execution of tasks in the
work�ow� Also� task managers are designed to start
tasks and to perform a supervisory role in forward
recovery�

To build a work�owmanagement system that sup

ports the integration and interoperability of hetero

geneous� autonomous� and distributed systems� uti

lization a communication mechanism operating at a
higher
level than Sockets or Remote Procedure Calls
�RPC would be bene�cial� Distributed Object Man

agement �DOM is intended to support this kind of
integration and interoperability� OMG �Object Man

agement Group�s CORBA �CommonObject Request
Broker Architecture �Object Management Group
���� is a rapidly maturing standard for DOM� The
CORBA speci�cation de�nes the architecture of an
Object Request Broker �ORB� whose job is to enable
and regulate interoperability between objects and ap

plications� The CORBA ��� speci�cation was re

leased in October ����� It was followed by CORBA
��� released inMarch ���� and CORBA ��� in Decem

ber ����� CORBA ��� was announced in the end of
���	 �Object Management Group ���� �Betz �����
There are already almost a dozen commercial ORBs
or CORBA
like products available in the market �e�g��
DOE�Sun Microsystems� ORBeline�PostModern
Computing Technologies� Orbix�IONA Technologies�
ObjectBroker�DEC� �DSOM�IBM� HyperDesk�Hy

perDesk Corp�� ORBplus�HP� and XShell�Expertsoft
Corp�

In Section �� we address the interplay between
simulation and work�ow technology� An overview of
the architecture of our two prototype work�ow man

agement systems is given in Section �� while task
structures and task models are presented in Section
	� Section � details several di�erent types of work�ow
simulations� and includes a discussion of related mon

itoring issues� Finally� an example simulation study
comparing the two architectures is given in Section ��

� SIMULATION AND WORKFLOW

We now consider the interplay between simulation
and work�ow technology� First� work�ow technol

ogy and concepts may be used in the development of
simulation environments� Second� simulation model

ing and analysis capabilities may be integrated with
work�ow technology�

Work�ow technology can bene�t simulation in a
very important way� A recent trend in simulation en

vironments is to make the components more indepen

dent �Standridge and Centeno ���	� The environ

ment would consist of modular loosely
coupled com

ponents that are brought together for the purpose of
dealing with some simulation analysis problem� Com

ponents may include GUI designers� simulation en

gines� animation packages� graphics packages� spread

sheets� editors� database management systems� forms
packages� query tools� mathematical packages� and
statistical packages� Instead of a single vendor pro

viding a �xed monolithic environment� a work�ow
system would allow components to be selected and
plugged into the work�ow system as needed� and re

placed when desired� Furthermore� if simulation ven

dors could agree on standard interfaces� users would
be free to mix and match from multiple vendors� At
the ���	Winter SimulationConference there was vig

orous debate about the need for a complete IEEE
sponsored standard for simulation environments� Ven

dors felt that this might limit innovation and handi

cap their ability to make autonomous decisions� The
work�ow approach would only require that the ven

dors agree on the form of narrow interfaces between
di�erent types of components� In addition� this stan

dardization e�ort could be minimized by incorporat

ing some of the standardization work already done by
the Object Management Group �OMG on CORBA
�Object Management Group ���� and by the Work

�ow Management Coalition �WfMC �The Work�ow
Management Coalition ���	�

The main focus of this paper� however� is on how
simulation can be useful for work�ow� There are two
principal ways in which simulation can be used in
a work�ow system� �� Simulation can be used to
design WFMS architectures and tune WFMS imple

mentations� The performance and reliability of im

plementations based on di�erent architectures can be
tested� Later in this paper� we give a simple example
of a performance study that is used for just this pur

pose� It compares the e�ciency of two architectures�
for which we have prototype implementations� under
varying workloads and assumptions about the rela

tive amount of work performed by tasks versus task
managers� �� Simulation can be used to study and
re�ne work�ow speci�cations� Because the work�ow



speci�cation captures the implementationaspects of a
business process model� their simulation and analysis
can provide valuable feedback to the business process
model evaluation�

Using the Graphical Work�ow Designer �Muru

gan ����� a work�ow can be readily designed by
a domain expert� For example� the HIIT project
http���www�scra�org�hiit�html of which we are a part
is charged with the task of automating portions of
the healthcare delivery system� One important as

pect of this is managed care� If patients can receive
all of their care services in an e�cient sequence� and
resources �e�g�� doctors� nurses� technicians� operat

ing rooms� hospital rooms� lab tests� etc� can be
assigned so as to minimize queuing delays� then it
is possible for patients to receive quality care in less
time�

Because of the multitude of factors involved in de

signing e�cient work�ows for healthcare delivery and
managed care� simulation becomes very useful� Let
us consider the following example in which a patient
comes to the Emergency Room �ER of a hospital
with a speci�c complaint� The patient �rst registers
with the receptionist� who then assigns the patient to
an examining room in the emergency wing� Once
an ER doctor becomes available� he�she examines
the patient and comes up with an initial diagnosis�
The initial diagnosis may call for lab tests �X
Rays
or a biopsy which will then be analyzed� or it may
simply lead directly to a �nal diagnosis� The doc

tor at this time determines if the patient should be
treated on an inpatient or outpatient basis� After
inpatient treatment� the patient may continue treat

ment as an outpatient or terminate treatment� If the
outpatient�s progress is not satisfactory� then the pa

tient may return to the hospital for another round
of diagnosis� otherwise� they may terminate treat

ment� Speci�c treatment plans �both inpatient and
outpatient would in practice expand into their own
subwork�ows� Figures � and � are work�ow models
produced with our Graphical Work�ow Designer de

picting this example �models were adapted from Hsu
and Kleissner �����

� WFMS ARCHITECTURES

A Work�ow Management System �WFMS consists
of a model repository from which work�ows may be
selected for execution� Work�ows or components of
work�ows may be added to the model repository by
specifying them in a work�ow language �e�g�� WFSL�
TSL� Krishnakumar and Sheth ���� or by design

ing them with a Graphical Work�ow Designer �Mu

rugan ����� The Work�ow Speci�cation Language
�WFSL �Krishnakumar and Sheth ���� is a declar


Outpatient Case_Closed

Inpatient

Register Diagnosis

Figure �� Patient Work�ow Model

End_Diag

Biopsy

Examine

X_Rays Analysis

Figure �� Diagnosis Subwork�ow Model

ative rule
based language to describe the conceptual
work�ow speci�cation� while the Task Speci�cation
Language �TSL �Krishnakumar and Sheth ���� is
a language to specify simple tasks that run in a HAD
information systems environment� Once a work�ow is
selected from the repository� several translation steps
are carried out that instantiate a work�ow instance
that is able to run within the execution environment
�some manual coding�recoding is also necessary� In
Subsections ��� and ���� we give an overview of two
architectures for the execution environment�

For the purposes of simulation� a simple �exible
architecture is the most suitable� In addition� we wish
to be able to conveniently implement full function
monitoring and animation� It is therefore useful to
have all the relevant information centrally located�
This is precisely what our �rst two prototype WFMS
architectures do� We will brie�y discuss them here�
These architectures and three other architectures are
discussed in more detail in Wang ������

The main components in the execution environ

ment are the Work�ow Scheduler� Task Managers
�TMs� and Tasks� Tasks are the run
time instances
of an enterprise�s applications� Today they typically
run independently or are tied together in ad hoc ways�
WFMSs tie these tasks together in a loosely coupled
fashion� This is achieved by making minor modi�ca

tions to existing applications code or enforcing stan

dards for new application development� The modi




�cations provide hooks into the task that allow the
transitions between major steps to be observed and
in some cases controlled by the task manager for the
task� To establish global control as well as facilitate
recovery and monitoring� the task managers commu

nicate with a scheduler� It is possible for the scheduler
to be either centralized or distributed� or even some
hybrid between the two �Wang �����

��� Highly Centralized Architecture

This architecture incorporates task managers into the
scheduler�s process� This process is multithreaded
and has a thread for the scheduler proper� a thread for
the scheduler�s dispatcher� and a thread for each task
manager� Task managers communicate with tasks
through a CORBA IDL interface� The architecture
is shown in Figure �� where each box represents a
process� while subdivisions within a box represent
threads �light weight processes�

TM

2 nTask Task1Task

TM TM n1 2

Scheduler

IDL IDL IDL

Monitoring

Service

Dispatching

Service

Figure �� Highly Centralized Scheduler

��� Centralized Architecture

The main di�erence between this architecture and the
previous one is that task managers are not threads
any more and may reside at remote sites� However�
the scheduler still has a thread for each task man

ager� The thread does nothing other than activate
the task manager on a speci�ed machine using an

other CORBA IDL interface� �The reason for keeping
a thread for every task is that synchronous calls are
still used to communicate between the scheduler and
task managers in this architecture�

In this architecture� CORBA IDL interfaces are
used at two distinct levels� �� the scheduler pro

cess contains threads which communicate with task
managers using CORBA IDL interfaces� and �� task
managers communicatewith tasks using CORBA IDL
interfaces�

Since task managers have been separated from the
scheduler process and may reside at other nodes� task
managers can take advantage of multiple nodes to do
work in parallel� Communication between task man

agers and tasks may be sped up since a task and its
task manager may be co
located in the same process
using ORBeline services�

� TASK STRUCTURES � MODELS

A task structure indicates the generic form of a task�
A given structure simply �xes its set of states and
the permissible transitions between those states� A
full task speci�cation will �x the type of the task�
Beyond the task structure� this also requires a speci

�cation of allowable operations� Following the object

oriented paradigm� each state will correspond to an
operation �or method� A full speci�cation requires
that the parameters and return type of each oper

ation be speci�ed� In essence� this is analogous to
a class speci�cation in C��� However� to facilitate
interoperability and distribution� the speci�cation is
in the form of a CORBA IDL interface speci�cation�
In addition to operations �methods� attributes and
exceptions may be speci�ed� Several di�erent task
structures have been developed �Attie et al� ����� Kr

ishnakumar and Sheth ����� Wang ����� The task
structure for transactional tasks is shown in Figure 	
below�

aborted committed

executing

Figure 	� Transactional Task Structure

Clients may call IDL interfaces using any lan

guage for which a binding is provided �e�g�� C� C���
SmallTalk� Servers �i�e�� implementations have this
same �exibility� For our WFMS system� the base
IDL interface Task is implemented on the server side
as an abstract class �all member functions �methods
are pure virtual� For simplicity only CORBA in and
out parameters are allowed� All in parameters �the
inputs are grouped together into a single structure



derived from WFL Data �similarly for the out pa

rameters �outputs� These structures may contain
embedded Object References so that actual objects
are not sent over the network� rather references to
CORBA objects are passed�

In our system� diagrammaticwork�owmodels �Kr

ishnakumar and Sheth ����� �Murugan ���� are
inherently hierarchical� At the top level is a model
for the overall work�ow �see Figure �� below this
are subwork�ows �or compound tasks �see Figure
� which themselves may be made up of subwork

�ows or simple tasks� Each task is further modeled
via a state transition diagram �see Figure 	� Op

tionally� the gates �see Section 	�� guarding states
may displayed� Time elapses either when a task is
in a state or blocked in a gate waiting to enter a
state� Thus tasks are similar to processes in the pro

cess
oriented simulation world
view while states cor

respond to activities� the beginning and end of which
are events �instantaneous occurrences� Note� from
an aggregate point of view an activity could corre

spond to an entire task� These graphical work�ow
and task models along with supplementary speci�

cations �e�g�� conditions� inputs� outputs� etc� both
created using the Graphical Work�ow Designer are
the basis for partial automated code generation for
actual work�ows as well as simulations� The graphi

cal �or diagrammatic models used for our work�ow
system are not unlike those used for discrete
event
simulation �Ceric and Paul ���� �e�g�� Event Graphs
�Schruben ����� Petri Nets �Peterson ����� Activ

ity Cycle Diagrams �Pidd ����� Activity Diagrams
�Birtwistle ����� GPSS Block Diagrams �Schriber
���	� or SLAM Network Diagrams �Pritsker �����
Of these� our diagrams are most similar to Activity
Diagrams�

��� Intertask Dependencies and Enable Arcs

Coordination between tasks is accomplished by spec

ifying intertask dependencies using enable clauses�
An enable clause may have any number of predi

cates� Each predicate is either a task
state vector or
a Boolean expression� For the database community�
this represents an Event
Condition
Action �ECA rule
�Chakravarthy et al �����

A successful enable will cause one leaf node in the
gate guarding say �task
i� state
j� to become true� If
the gate�s OR
AND tree now evaluates to true� the
gate will open �it is fully enabled and the method
implementing �task
i� state
j� will be scheduled for ex

ecution� If state
j is the root of the DAG representing
task
i�s task structure� then enabling causes task ini

tiation� The execution may be scheduled to occur im

mediately �this is the default or at a given time in the

future� or after a given time delay� In the case of tra

ditional simulation using virtual time� such schedul

ing is straightforward� However� for scheduling using
real time� one could potentially address many com

plex issues� Our WFMS is at present not intended for
use in domains where hard real time constraints are
present� we simply incorporate deadlines into the cal

culation of dynamic priorities� The dynamic priority
will a�ect placement on WFMS dispatch queues� and
optionally the actual execution priority for operating
systems that allow such in�uence�

The time dimension will correspond to real time
when actual implementations are performed� The
same is true when components are replaced with sim

ulated versions� However� in the case of traditional
discrete
event simulation virtual time will be used�

� TYPES OF SIMULATIONS

For the high level work�ow model shown in Figures
� and �� simulation would be primarily useful for al

locating resources �doctors� nurses� lab technicians�
rooms� equipment� etc� to meet expected demands�
Major opportunities to apply the principles of man

aged care would occur when detailed treatment plans
are redesigned�

As illustrated in the example in Section �� it is im

portant to be able to run numerous simulations before
full implementation of a work�ow is attempted� Fur

thermore� it is useful to provide a variety of di�erent
simulation modes from abstract to near implementa

tion� The degrees of freedom in this spectrum corre

spond to replacing actual components with simulated
components� These simulated components should try
to mimic the actual behavior of real components as
closely as possible in terms of resource contention and
consumption� and outputs generated� These aspects
would be simulated by stochastic means� Depending
on the characteristics of the task involved di�erent
resources may be deemed important� Examples of
potentially important resources include CPUs� mem

ories� disks� networks� �les� databases� repositories�
and warehouses�

At the near implementation end of the spectrum�
one may envision simply replacing �or more likely de

ferring the coding of a few of the larger more com

plex tasks with simulated versions� Moving a little
further from the implementation end� one could re

place all the task with simulated versions� This would
be particularly useful when all of the tasks have yet
to be coded or may need to be substantially recoded�

Simulating tasks can be very useful since tasks
which represent the application code can be thou

sands of lines of code� It would be advantageous to
be able to test aspects of a proposed work�ow before



implementing or retro�tting an application� It also
allows what
if questions to be more easily addressed�

The next step is to replace some or all of the task
managers with simulated versions� Task managers
and tasks work together to achieve two goals� namely�
to carry out some application and to coordinate with
the rest of the work�ow� The task is mainly composed
of application
oriented code� while the task manager
is composed of code to observe�control the execution
of task�s� deal with failure and recovery issues� and
communicate with the scheduler or other task man

agers� Sometimes the distinction between the two
roles may be blurred� For example� it might be the
case that a task is written to provide interactive SQL
access to a database� The task manager might be
charged with the responsibility of locating� connect

ing to� and opening the appropriate database� Be

cause of the important interplay between task man

agers and tasks� one will often want to simulate both
as was done for our sample simulation �see Section
�� With this type of simulation� one is still running
a distributed program�

One could further simplify the situation by en

tirely eliminating the tasks� Care must be taken in
doing this� so as to not lose realism� For example�
what happens to the communication delays� the de

lays associated with tasks carrying out their opera

tions� and the possible contention for resources that
is missing because tasks are no longer running� These
aspects can be replaced by introducing queues� simu

lated resources� and operational delays� If the WFMS
is implemented according to the Highly Centralized
Architecture� then this is particularly convenient for
simulation purposes� as all of the components will be
threads executing within a single �heavyweight pro

cess� This is similar to what happens within tradi

tional discrete
event simulators which follow the pro

cess
oriented world view �Kreutzer ����� Such sim

ulators use either threads or coroutines to represent
the active elements within the simulation�

There is still an important limitation to the modes
of simulation so far discussed� The simulated compo

nents are to mimic the actual components as closely
as possible in time and space� This is good from
the point of view of model validation as well as get

ting feedback from potential users�participants of�in
the work�ow �e�g�� sample screens may pop up on a
nurse�s workstation� Unfortunately� this will make
it di�cult to explore a variety of what
if questions
for lengthy work�ows� To deal with the above prob

lem� some form of time compression in the simulation
needs to be provided� So far the scheduler has been
operating in real time� Traditional discrete
event sim

ulators operate on simulated or virtual time� Rather
than time smoothly advancing it jumps from event to

event skipping the time in between� This allows for
substantial time compression without losing model
�delity �e�g�� the ability to detect bottlenecks accu

rately� To facilitate this type of simulationmodeling�
the scheduler�s internal data structures maintain ei

ther real time or virtual time information� The choice
is made by a compile time switch� Each choice has
its advantages� Traditional discrete
event simulation
has the advantage of time compression� while replac

ing components with simulated versions has the ad

vantage that the simulation becomes an intermediate
step to implementation�

The ability to monitor the execution of work�ows�
actual or simulated� is extremely important� Several
types of monitoring�tracking facilities should be pro

vided� In our current prototype WFMS� two moni

toring facilities are provided�

The �rst monitor developed was simply a process
that acts as a CORBA server to which the scheduler
process sends messages� The scheduler sends a mes

sage to the monitor whenever an event occurs� Upon
receiving a message� the monitor formats it appro

priately and displays it in a window� Unfortunately�
watching event messages scroll in a window is not a
very exciting way to understand what is happening in
a work�ow� Still� this type of detailed textual infor

mation may be very useful for debugging� An event
�lter is being designed to allow only certain events to
be displayed to improve the situation�

The second monitor is more interactive� It allows
a user to specify a task name �or task id if he�she
wishes to discover status information about a task
�e�g�� what state it is in� values of inputs or outputs
if available� when it started� whether any exceptions
have been raised� etc��

The next monitor which has been designed� but
yet to be developed� will provide a GUI interface via
the Graphical Work�ow Designer to the second mon

itor� Using this monitor� a user may select a task icon
using the mouse and click on it to see status informa

tion �e�g�� the current state is shown by changing its
color in the task structure diagram� The �nal moni

tor we plan to develop will be able to show animations
of the work�ow design diagram�

� EXAMPLE SIMULATION STUDY

We close this paper by showing the results of a pre

liminary study used to compare architectures � and ��
It was our �rst cut at replacing components of work

�ows with their simulated versions� Task managers
were partially implemented� while tasks themselves
were entirely simulated� The only resource that was
consumed by simulation replacement was CPU time�
In that sense� the study is limited� Task managers



were real in the sense that they communicated with
tasks using a real API �CORBA IDL interface� They�
however� did not do any of the things that a full

blown task manager might do �e�g�� connect and open
a databases� check the format and possibly content of
messages� handle failures� manage retries� etc�� To
cover a wide range of possibilities� we simulated the
consumption of CPU time �ranging from a few mil

liseconds to a couple of seconds for each major step
taken by the task manager� Most commonly� the
CPU requirements of task managers would be small�
Tasks on the other hand were entirely simulated� The
range of time taken by a task can vary widely from
a few milliseconds to minutes or even hours� Due to
this wide variation in time requirements we made the
upper bound the same for tasks and task managers
�naturally� a follow
on study should investigate what
happens when this upper bound is increased� The
environment on which the simulation was performed
was an Ethernet ���BASE
T LAN consisting of one
Sun SPARCstation �� and two Sun SPARCstation ��s
all running Solaris ��	� Communication was provided
by PostModern Computing�s CORBA ��� implemen

tation� Orbeline�

In this study� task CPU requirements� task man

ager CPU requirements� and the number of tasks
were varied over the study domain shown in Fig

ure �� Lines A� C and E test the e�ect of varying
task manager CPU requirements on turnaround time
when the tasks have light� moderate and heavy CPU
requirements� respectively� Line B goes from heavy
task managers and light tasks to light task managers
and heavy tasks� while Line D goes from light task
managers and light tasks to heavy task managers and
heavy tasks� At every point on these lines� the num

ber of tasks varied from 	 to ��� �by 	� Some tasks
can be executed in parallel� and others cannot� Tasks
and task managers were distributed over the SPARC

station � workstations as evenly as possible� The
scheduler was run on the SPARCstation ���

Figure � illustrates the relative performance of the
two architectures over the entire domain of the simu

lation study� Architecture � is more than �� percent
faster than architecture � in Area a� while architec

ture � is more than �� percent faster than architecture
� in Area d� Our results indicate that architecture �
is faster than architecture � when tasks are less CPU
intensive than task managers� In this case� task man

agers compete for CPU time with the scheduler in
architecture �� Conversely� the results show that ar

chitecture � is faster than architecture � when tasks
are highly CPU intensive� An explanation is that the
CPU contention between the scheduler and task man

agers diminishes because they end up waiting for slow
running tasks�

Requirements
CPU

TM

10% faster

10% faster

A
D E

x

y z

CB

Area d

Architecture 1

Aera c

Area b

Architecture 2

Area a

Data Collection Line

Task CPU Requirements

Performance Area Border

light TM

heavy TM

light task
heavy task

Figure �� Throughput Contour Map

� CONCLUSIONS

In this paper� we discussed how simulation modeling
and analysis can be utilized for designing both work

�ows and work�ow management systems� We argued
that the best approach is to provide a spectrum of
solutions� from high
level traditional discrete
event
simulations to simulations that are near implemen

tations� The importance of sophisticated monitor

ing and animation capabilities was also highlighted�
An example simulation study was performed to com

pare the two WFMS architectures that we have de

veloped� the highly centralized �architecture � and
the centralized �architecture � architectures� Even
though this was only a �rst cut simulation study� it
did yield some interesting results� The results sug

gest that architecture � is superior when tasks have
heavier CPU requirements� while architecture � is su

perior when CPU requirements for task managers are
substantially greater than the CPU requirements for
tasks�

REFERENCES

Attie� P�� M� Singh� A� Sheth� and M� Rusinkiewicz�
����� Specifying and enforcing intertask depen

dencies� In Proc� of the ��th Intl� Conf� on Very

Large Databases ��	��	�� Dublin� Ireland�
Betz� M� ����� OMG�s CORBA� Dr� Dobb�s Journal

����������
Birtwistle� G� M� ����� Discrete Event Modelling in

SIMULA� MacMillian� London�



Ceric� V�� and R� Paul� ����� Diagrammatic rep

resentation of the conceptual model for discrete
event systems� Mathematics and Computers in

Simulation �	�������	�
The Work�ow Management Coalition� ���	� Glos


sary 
 a work�ow management coalition speci�ca

tion� Technical Report� The Work�ow Manage

ment Coalition� Brussels� Belgium�

Chakravarthy� U� et al� ����� Hipac� A research
project in active time
constrained database man

agement� Technical Report XAIT
��
��� Xerox
Advanced Information Technology� Cambridge�

Georgakopoulos� D�� M� Hornick� and A� Sheth� �����
An overview of work�ow management� From pro

cess modeling to work�ow automation infrastruc

ture� Distributed and Parallel Databases ��������
��	�

Object Management Group� ����� Common ob

ject request broker� Architecture and speci�ca

tion� Technical Report� Object Management Group�

Hsu� M�� and C� Kleissner� ����� ObjectFlow� To

wards a process management infrastructure� Tech

nical Report� Digital Equipment Corporation�

Kappel� G�� S� Rausch
Schott� and W� Retschitzeg

ger� ����� TriGS�ow active object
oriented work

�ow management� Technical Report� Department
of Computer Science� University of Linz�

Kreutzer� W� ����� System Simulation� Program�

ming Styles and Languages� Addison
Wesley� Syd

ney�

Krishnakumar� N�� and A� Sheth� ����� Manag

ing heterogeneous multi
system tasks to support
enterprise
wide operations� Distributed and Par�

allel Databases ������������
Murugan� A� ����� Graphical work�ow designer� Mas


ter�s Thesis� Department of Computer Science�
University of Georgia�

Peterson� J� L� ����� Petri nets� ACM Computing

Surveys ����������
Pidd� M� ����� Computer Simulation in Management

Science� Wiley� Chichester� �d edition�
Pritsker� A� A� B� ����� Introduction to Simulation

with SLAM � Wiley� New York�
Schriber� T� J� ���	� Simulation using GPSS� Wiley�

New York�
Schruben� L� ����� Simulation modeling with event

graphs� Communications of the ACM �����������
Standridge� C� R�� and M� A� Centeno� ���	� Con


cepts for modular simulation environments� In
Proc� of the ���� Winter Simulation Conference

�������� Orlando� Florida�
Wang� X� ����� Implementation and performance

evaluation of CORBA
based centralized work�ow
schedulers� Master�s Thesis� Department of Com

puter Science� University of Georgia�

AUTHOR BIOGRAPHIES

JOHN A� MILLER is an Associate Professor and
the Graduate Coordinator in the Department of Com

puter Science at the University of Georgia� His re

search interests include Simulation� Database Sys

tems� and Parallel � Distributed Systems� Dr� Miller
received the BS degree in Applied Mathematics from
Northwestern University in ����� and the MS and
PhD in Information and Computer Science from the
Georgia Institute of Technology in ���� and ����� re

spectively� During his undergraduate education� he
worked as a programmer at the Princeton Plasma
Physics Laboratory� Dr� Miller has been active in
conferences in both simulation and database� He has
been the Publication Co
Chair for RIDE �Research
Issues in Data Engineering� President�General Chair
of the Annual Simulation Symposium� and Coordi

nator of the Modeling Methodologies Track of the
Winter Simulation Conference� He has also been a
Guest Editor for the International Journal in Com

puter Simulation�

AMIT P� SHETH directs the Large Scale Distribut

ed Information Systems �LSDIS Lab� is an Asso

ciate Professor of Computer Science at the Univer

sity of Georgia� and an Adjunct Associate Profes

sor in College of Computing at the Georgia Institute
of Technology� Earlier he worked for � years in the
R�D labs at Bellcore� Unisys� and Honeywell� His
primary current research interests include transac

tional work�ow� management of heterogeneous dig

ital data� and semantic issues in global information
systems� Prof� Sheth has published over �� papers�
given over 	� invited talks and �	 tutorials� and lead
two international conferences and a workshop as a
General�Program �Co
Chair� Currently� he is Co

General Chair of the �st Intl� Conference on Interop

erable and Cooperative Information Systems� He is a
founding member and executive committee member
of the Intl� Foundation on Cooperative Information
Systems� He has also served twice as an ACM Lec

turer� has been on over twenty �ve program and orga

nizational committees� and is on the editorial board
of � journals�

KRYS J� KOCHUT is an Associate Professor of
Computer Science� His research interests include
Database Systems� Object
Oriented Design� Graphi

cal User Interfaces� as well as Languages and Compil

ers for Parallel Systems� He is also interested in Au

tomatic Theorem Proving and Logic Programming�
Dr� Kochut received the MS degree from the Univer

sity of Warsaw� Poland in ����� and the PhD from
the Louisiana State University in �����


