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Abstract

Rapid developments in hardware, software, and communication technologies

have allowed the emergence of Internet-connected sensory devices that provide

observation and data measurement from the physical world. By 2020, it is

estimated that the total number of Internet-connected devices being used will

be between 25-50 billion. As the numbers grow and technologies become more

mature, the volume of data published will increase. Internet-connected devices

technology, referred to as Internet of Things (IoT), continues to extend the

current Internet by providing connectivity and interaction between the physical

and cyber worlds. In addition to increased volume, the IoT generates Big Data

characterized by velocity in terms of time and location dependency, with a

variety of multiple modalities and varying data quality. Intelligent processing

and analysis of this Big Data is the key to developing smart IoT applications.

This article assesses the different machine learning methods that deal with the

challenges in IoT data by considering smart cities as the main use case. The

key contribution of this study is presentation of a taxonomy of machine learning

algorithms explaining how different techniques are applied to the data in order

to extract higher level information. The potential and challenges of machine
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learning for IoT data analytics will also be discussed. A use case of applying

Support Vector Machine (SVM) on Aarhus Smart City traffic data is presented

for a more detailed exploration.

Keywords: Machine Learning, Internet of Things, Smart Data, Smart City

1. Introduction

Emerging technologies in recent years and major enhancements to Internet

protocols and computing systems, have made the communication between dif-

ferent devices easier than ever before. According to various forecasts, around

25-50 billion devices are expected to be connected to the Internet by 2020. This5

has given rise to the newly developed concept of Internet of Things (IoT). IoT

is a combination of embedded technologies regarding wired and wireless com-

munications, sensor and actuator devices, and the physical objects connected

to the Internet [1, 2]. One of the long-standing objectives of computing is to

simplify and enrich human activities and experiences (e.g., see the visions asso-10

ciated with “The Computer for the 21st Century” [3] or “Computing for Human

Experience” [4]) IoT needs data to either represent better services to users or

enhance IoT framework performance to accomplish this intelligently. In this

manner, systems should be able to access raw data from different resources over

the network and analyze this information to extract knowledge.15

Since IoT will be among the greatest sources of new data, data science will

make a great contribution to make IoT applications more intelligent. Data sci-

ence is the combination of different fields of sciences that uses data mining,

machine learning and other techniques to find patterns and new insights from

data. These techniques include a broad range of algorithms applicable in differ-20

ent domains. The process of applying data analytics methods to particular areas

involves defining data types such as volume, variety, velocity; data models such

as neural networks, classification, clustering methods and applying efficient al-

gorithms that match with the data characteristics. By following our reviews, it

is deduced that: firstly, since data is generated from different sources with spe-25
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cific data types, it is important to adopt or develop algorithms that can handle

the data characteristics, secondly, the great number of resources that generate

data in real time are not without the problem of scale and velocity and thirdly,

finding the best data model that fits the data is one of the most important

issues for pattern recognition and for better analysis of IoT data. These issues30

have opened a vast number of opportunities in expanding new developments.

Big Data is defined as high-volume, high-velocity, and high variety data that

demand cost-effective, innovative forms of information processing which enable

enhanced insight, decision making, and process automation[5].

With respect to the challenges posed by Big Data, it is necessary to divert35

to a new concept termed Smart Data, which means: ”realizing productivity,

efficiency, and effectiveness gains by using semantics to transform raw data into

Smart Data” [6] . A more recent definition of this concept is: ”Smart Data pro-

vides value from harnessing the challenges posed by volume, velocity, variety,

and veracity of Big Data, and in turn providing actionable information and im-40

proving decision making.” [7]. At last, Smart Data can be a good representative

for IoT data.

1.1. The Contribution of this paper

The objective here is to answer the following questions:

A)How could machine learning algorithms be applied to IoT smart45

data?

B)What is the taxonomy of machine learning algorithms that can

be adopted in IoT?

C )What are IoT data characteristics in real-world?

D)Why is the Smart City a typical use case of IoT applications?50

A) To understand which algorithm is more appropriate for processing and

decision-making on generated smart data from the things in IoT, realizing these

three concepts is essential. First, the IoT application (Sec. 3), second, the IoT

data characteristics (Sec, 4.2), and the third, the data-driven vision of machine

learning algorithms (Sec. 5). We finally discussed the issues in Sec. 6.55
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B) About 70 articles in the field of IoT data analysis are reviewed, revealing

that there exist eight major groups of algorithms applicable to IoT data. These

algorithms are categorized according to their structural similarities, type of data

they can handle, and the amount of data they can process in reasonable time.

C) Having reviewed the real-work perspective of how IoT data is analyzed60

by over 20 authors, many significant and insightful results have been revealed

regarding data characteristics. We discussed the results in Sec. 6 and Table 1.

To have a deeper insight into IoT smart data, patterns must be extracted and the

generated data interpreted. Cognitive algorithms will undertake interpretation

and matching, much as the human mind would do. Cognitive IoT systems will65

learn from the data previously generated and will improve when performing

repeated tasks. Cognitive computing as as a prosthetic for human cognition

by analyzing massive amounts of data and being able to respond to questions

humans might have when making certain decisions. Cognitive Iot plays an

important role in enabling the extraction of meaningful patterns form the IoT70

smart data generated [8].

D) Smart City has been selected as our primary use case in IoT for three

reasons: Firstly, among all of the reviewed articles the focus of 60 percents is

on the field of the Smart City, secondly, Smart City includes many of the other

use cases in IoT, and thirdly, there are many open datasets for Smart City75

applications easily accessible for researchers. Also, Support Vector Machine

(SVM) algorithm is implemented on the Aarhus City smart traffic data in order

to predict traffic hours during one day in Sec. 6. By answering the above

questions about the IoT smart data and machine learning algorithms, we would

be able to choose the best machine learning algorithm that can handle IoT80

smart data characteristics. Unlike the others, similar surveys about the machine

learning and IoT, readers of this article would be able to get deep and technical

understanding of machine learning algorithms, IoT applications, and IoT data

characteristics along with both technical and simple implementations.
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Figure 1: Organization of survey

1.2. Organization85

The rest of this paper is organized as follows: the related articles in this

field are reviewed and reported in Sec. 2. IoT applications and communication

protocols, computing frameworks, IoT architecture, and Smart City segments

are reviewed, explained, briefed and illustrated in Sec. 3. The quality of data,

Big Data generation, integrating sensor data and semantic data annotation are90

reviewed in Sec. 4. Machine learning algorithms in eight categories based on

recent researches on IoT data and frequency of machine learning algorithms

are reviewed and briefed in Sec. 5. Matching the algorithms to the particular

Smart City applications is done in Sec. 6, and the conclusion together with

future research trends and open issues are presented in Sec. 7.95

2. Literature Review

Since IoT represents a new concept for the Internet and smart data, it is a

challenging area in the field of computer science. The important challenges for

researchers with respect to IoT consist of preparing and processing data.
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[9] proposed 4 data mining models for processing IoT data. The first pro-100

posed model is a multi layer model, based on a data collection layer, a data

management layer, an event processing model, and data mining service layer.

The second model is a distributed data mining model, proposed for data deposi-

tion at different sites. The third model is a grid based data mining model where

the authors seek to implement heterogeneous, large scale and high performance105

applications, and the last model is a data mining model from multi technology

integration perspective, where the corresponding framework for a future Internet

is described.

[10] performed research into warehousing radio frequency identification, (RFID)

data, with a focus on managing and mining RFID stream data, specifically.110

[11] introduce a systematic manner for reviewing data mining knowledge and

techniques in most common applications. In this study, they reviewed some data

mining functions like classification, clustering, association analysis, time series

analysis, and outline detection. They revealed that the data generated by data

mining applications such as e-commerce, Industry, healthcare, and city gover-115

nance are similar to that of the IoT data. Following their findings, they assigned

the most popular data mining functionality to the application and determined

which data mining functionality was the most appropriate for processing each

specific application’s data.

[12] ran a survey to respond to some of the challenges in preparing and120

processing data on the IoT through data mining techniques. They divided their

research into three major sections, in the first and second sections; they explain

IoT, the data, and the challenges that exist in this area, such as building a model

of mining and mining algorithms for IoT. In the third section, they discuss the

potential and open issues that exist in this field. Then, data mining on IoT125

data have three major concerns: first, it must be shown that processing data

will solve the chosen problems. Next the data characteristics must be extracted

from generated data, and then, the appropriate algorithm is chosen according

to the taxonomy of algorithms and data characteristics.
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[13] attempted to explain the Smart City infrastructure in IoT and discussed130

the advanced communication to support added-value services for the adminis-

tration of the city and citizens thereof. They provide a comprehensive view

of enabling technologies, protocols, and architectures for Smart City. In the

technical part of their, the article authors reviewed the data of Padova Smart

City.135

3. Internet of Things

The purpose of Internet of Things, (IoT) is to develop a smarter environ-

ment, and a simplified life-style by saving time, energy, and money. Through

this technology, the expenses in different industries can be reduced. The enor-

mous investments and many studies running on IoT has made IoT a growing140

trend in recent years. IoT is a set of connected devices that can transfer data

among one another in order to optimize their performance; these actions occur

automatically and without human awareness or input. IoT includes four main

components: 1) sensors, 2)processing networks, 3) analyzing data, and 4) mon-

itoring the system. The most recent advances made in IoT began when radio145

frequency identification (RFID) tags were put into use more frequently, lower

cost sensors became more available, web technology developed, and communica-

tion protocols changed [14, 15]. The IoT is integrated with different technologies

and connectivity is necessary and sufficient condition for it. So communication

protocols are constituents the technology that should be enhanced [16, 17]. In150

IoT, communication protocols can be divided into three major components:

(1) Device to Device (D2D): this type of communication enables communi-

cation between nearby mobile phones. This is the next generation of cellular

networks.

(2) Device to Server (D2S): in this type of communication devices, all the155

data is sent to the servers, which can be close or far from the devices. This type

of communication mostly is applied in cloud processing.

(3) Server to Server (S2S): in this type of communication, servers transmit
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data between each other. This type of communication mostly is applied in

cellular networks.160

Processing and preparing data for these communications is a critical chal-

lenge. To respond to this challenge, different kinds of data processing, such as

analytics at the edge, stream analysis, and IoT analysis at the database, must be

applied. The decision to apply any one of the mentioned processes depends on

the particular application and its needs[18]. Fog and cloud processing are two165

analytical methods adopted in processing and preparing data before transfer-

ring to the other things. The whole task of IoT is summarized as follows: first,

sensors and IoT devices collect the information from the environment. Next,

knowledge should be extracted from the raw data. Then, the data will be ready

for transfer to other objects, devices, or servers through the Internet.170

3.1. Computing Framework

Another important part of IoT is computing frameworks for processing data,

the most famous of which are fog and cloud computing. IoT applications use

both frameworks depending on application and process location. In some appli-

cations, data should be processed upon generation, while in other applications,175

it is not necessary to process data immediately. The instant processing of data

and the network architecture that supports it is known as fog computing. Col-

lectively, they are applied for edge computing[19].

3.1.1. Fog Computing:

Here, the architecture of fog computing is applied to migrate information180

from the data centers task to the edge of the servers. This architecture is built

based on the edge servers. Fog computing provides limited computing, storage,

and network services, also providing logical intelligence and filtering of data for

data centers. This architecture has been and is being implemented in vital areas

like eHealth and military applications [20, 21].185
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3.1.2. Edge Computing:

In this architecture, processing is run at a distance from the core, toward

the edge of the network. This type of processing enables data to be initially

processed at the edge devices. Devices at the edge may not be connected to the

network in a continuous manner, so they need a copy of master data/reference190

data for offline processing. Edge devices have different features such as 1)en-

hancing security, 2)filtering and cleaning of the data, and 3)storing local data

for local use[22].

3.1.3. Cloud Computing:

Here, data for processing is sent to the data centers, and after being analyzed195

and processed, they become accessible.

This architecture has high latency and high load balancing, indicating that

this architecture is not sufficient enough for processing IoT data because most

processing should run at high speeds. The volume of this data is high, and Big

Data processing will increase the CPU usage of the cloud servers[23]. There are200

different types of cloud computing:

(1) Infrastructure as a Service (IaaS): where the company purchases all the

equipment like hardware, servers , and networks.

(2) Platform as a Service (PaaS): where all the equipment above, are put

for rent on the Internet.205

(3) Software as a service(SaaS): where a distributed software model is pre-

sented. In this model, all the practical software will be hosted from a service

provider, and practical software can be accessible to the users through the In-

ternet [24].

(4) Mobile Backend as a Service (MBaaS): also known as a Backend as a210

Service(BaaS), provides the web and mobile application with a path in order to

connect the application to the backend cloud storage. MBaaS provides features

like user management, push notification and integrates with the social network

services. This cloud service benefits from application programming interface

(API) and software development kits (SDK).215
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3.1.4. Distributed Computing

: This architecture is designed for processing high volume data. In IoT

applications, because the sensors generate data on a repeated manner, Big Data

challenges are encountered[22, 25]. To overcome this phenomenon, a distributed

computing is designed to divide data into packets, and assign each packet to220

different computers for processing. This distributed computing has different

frameworks like Hadoop and Spark. When migrating from cloud to fog and

distributed computing, the following occur: 1) a decrease in network loading,

2) an increase in data processing speed, 3) a reduction in CPU usage, 4) a

reduction in energy consumption, and 5) higher data volume processing.225

Because the Smart City is one of the primary applications of IoT, the most

important use cases of Smart City and their data characteristics are discussed

in the following sections.

4. Smart City

Cities always demand services to enhance the quality of life and make ser-230

vices more efficient. In the last few years, the concept of smart cities has played

an important role in academia and in industry [26]. With an increase in the

population and complexity of city infrastructures, cities seek manners to handle

large-scale urbanization problems. IoT plays a vital role in collecting data from

the city environment. IoT enables cities to use live status reports and smart235

monitoring systems to react more intelligently against the emerging situations

such as earthquake and volcano. By using IoT technologies in cities, the ma-

jority of the city’s assets can be connected to one another, make them more

readily observable, and consequently, more easy to monitor and manage. The

purpose of building smart cities is to improve services like traffic management,240

water management, and energy consumption, as well as improving the quality

of life for the citizens. The objectives of smart cities is to transform rural and

urban areas into places of democratic innovation [27]. Such smart cities seek

to decrease the expenses in public health, safety, transportation and resource
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management, thus assisting the their economy [28].245

[29] Believe that in the long term, the vision for a Smart City would be that

all the cities’ systems and structures will monitor their own conditions and carry

out self-repair upon need.

4.1. Use Case

A city has an important effect on society because the city touches all aspects250

of human life. Having a Smart City can assist in having a comfortable life. Smart

Cities use cases consist of Smart Energy, smart mobility, Smart Citizens, and

urban planning. This division is based on reviewing the latest studies in this

field and the most recent reports released by McKinsey and Company.

4.1.1. Smart Energy255

Smart Energy is one of the most important research areas of IoT because

it is essential to reduce overall power consumption[30]. It offers high-quality,

affordable environment energy friendly. Smart Energy includes a variety of op-

erational and energy measures, including Smart Energy applications, smart leak

monitoring, renewable energy resources, etc. Using Smart Energy(i.e., deploy-260

ment of a smart grid) implies a fundamental re-engineering of the electricity

services[31]. Smart Grid is one of the most important applications of Smart

Energy. It includes many high-speed time series data to monitor key devices.

For managing this kind of data, [32] have introduced a method to manage and

analyze time series data in order to make them organized on demand. Moreover,265

Smart Energy infrastructure will become more complex in future, therefore [33]

have proposed a simulation system to test new concept and optimization ap-

proaches and forecast future consumption. Another important application of

Smart Energy is a leak monitoring system. The objective of this system is to

model a water or gas management system which would optimize energy resource270

consumption [34, 35].
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4.1.2. Smart Mobility

Mobility is another important part of the city. Through the IoT, city officials

can improve the quality of life in the city. Smart mobility can be divided into

the following three major parts:275

(1) Autonomous cars: IoT will have a broad range effect on how vehicles

are run. The most important question is about how IoT can improve vehicle

services. IoT sensors and wireless connections make it possible to create self-

driving cars and monitor vehicles performance. With the data collected from

vehicles, the most popular/congested routes can be predicted, and decisions can280

be made to decrease the traffic congestion. Self-driving cars can improve the

passenger safely because they have the ability to monitor the driving of other

cars.

(2) Traffic control : Optimizing the traffic flow by analyzing sensor data

is another part of mobility in the city. In traffic control, traffic data will be285

collected from the cars, road cameras, and from counter sensors installed on

roads.

(3) Public transportation: IoT can improve the public transportation system

management by providing accurate location and routing information to smart

transportation system. It can assist the passengers in making better decisions290

in their schedules as well as decrease the amount of wasted time. There exist

different perspectives over how to build smart public transportation systems.

These systems need to manage a different kind of data like vehicle location

data and traffic data. Smart public transportation systems should be real-time

oriented in order to make proper decisions in real-time as well as use historical295

data analysis [36]. For instance, [37] have proposed a mechanism that considers

Smart City devices as graph nodes and they have used Big Data solutions to

solve these issues.

4.1.3. Smart Citizen

This use case for Smart Cities covers a broad range of areas in human lives,300

like environment monitoring, crime monitoring, and social health. The envi-
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ronment with all its components is fundamental and vital for life; consequently,

making progress in technology is guaranteed to enhance security. Close moni-

toring devoted to crime would also contribute to overall social health .

4.1.4. Urban Planning305

Another important aspect in use cases for the Smart City is drawing long-

term decisions. Since the city and environment have two major roles in human

life, drawing decisions in this context is critical. By collecting data from different

sources, it is possible to draw a decision for the future of the city. Drawing

decisions affecting the city infrastructure, design, and functionality is called310

urban planning. IoT is beneficial in this area because through Smart City data

analysis, the authorities can predict which part of the city will be more crowded

in the future and find solutions for the potential problems. A combination

of IoT and urban planning would have a major affect on scheduling future

infrastructure improvements.315

4.2. Smart City Data Characteristics

Smart cities’ devices generate data on a continuous manner, indicating that

the data gathered from traffic, health, and energy management applications

would provide sizable volume. In addition, since the data generation rate varies

for different devices, processing data with different generation rates is a chal-320

lenge. For example, frequency of GPS sensors updating is measured in sec-

onds while, the frequency of updates for temperature sensors may be measured

hourly. Whether the data generation rate is high or low, there always exists the

danger of important information loss. To integrate the sensory data collected

from heterogeneous sources is challenging[14, 38]. [39] applied Big Data analytic325

methods to distinguish the correlation between the temperature and traffic data

in Santander City, Spain.

[40] proposed a new framework integrating Big Data analysis and Industrial

Internet of Things (IIoT) technologies for Offshore Support Vessels (OSV) based

on a hybrid CPU/GPU high-performance computing platform.330
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Another characteristic is the dynamic nature of the data. Autonomous cars’

data is an example of Dynamic Data because the sensor results will change

based on different locations and times.

The quality of the collected data is important, particularly the Smart City

data which have different qualities due to the fact that they are generated from335

heterogeneous sources. According to[41], the quality of information from each

data source depends on three factors:

1) Error in measurements or precision of data collection.

2) Devices’ noise in the environment.

3) Discrete observation and measurements.340

To have a better Quality of Information (QoI), it is necessary to extract

higher levels of abstraction and provide actionable information to other ser-

vices. QoI in Smart Data depends on the applications and characteristics of

data. There exist different solutions to improve QoI. For example, to improve

the accuracy of data, selecting trustworthy sources and combining the data345

from multiple resources is of essence. By increasing frequency and density of

sampling, precision of the observations and measurements will be improved,

which would lead a reduction in environmental noise. The data characteristics

in both IoT and Smart City are shown in Figure 2. Semantic data annotation

is another prime solution to enhance data quality. Smart devices generate raw350

data with low-level abstractions; for this reason, the semantic models will pro-

vide interpretable descriptions on data, its quality, and original attributes [28].

Semantic annotation is beneficial in interpretable and knowledge-based infor-

mation fusion[42]. Smart data characteristics in smart cities are tabulated in

brief, in Table 1.355

5. Taxonomy of machine learning algorithms

Machine learning is a sub field of computer science, a type of Artificial Intel-

ligence, (AI), that provides machines with the ability to learn without explicit

programming. Machine learning evolved from pattern recognition and Compu-
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Table 1: Characteristic of Smart Data in smart cities

Smart City

Use Cases
Type of Data

Where Data

Processed
References

Smart Traffic Stream/Massive Data Edge
[43]

[14]

Smart Health Stream/Massive Data Edge/Cloud [44]

Smart Environment Stream/Massive Data Cloud [45]

Smart Weather

Prediction

Stream Data Edge [46]

Smart Citizen Stream Data Cloud
[47]

[48]

Smart Agriculture Stream Data Edge/Cloud [49]

Smart Home Massive/Historical Data Cloud [50]

Smart Air Controlling Massive/Historical Data Cloud [38]

Smart Public Place

Monitoring

Historical Data Cloud [51]

Smart Human

Activity Control

Stream/Historical Data Edge/Cloud
[52]

[53]
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Figure 2: Data characteristics

tational Learning Theory. There, some essential concepts of machine learning360

are discussed as well as, the frequently applied machine learning algorithms for

smart data analysis.

A learning algorithm takes a set of samples as an input named a training

set. In general, there exist three main categories of learning: supervised, un-

supervised, and reinforcement [54, 55, 56]. In an informal sense, in supervised365

learning, the training set consists of samples of input vectors together with their

corresponding appropriate target vectors, also known as labels. In unsupervised

learning, no labels are required for the training set. Reinforcement learning

deals with the problem of learning the appropriate action or sequence of actions

to be taken for a given situation in order to maximize payoff. This article focuses370

is on supervised and unsupervised learning since they have been and are being

widely applied in IoT smart data analysis. The objective of supervised learning

is to learn how to predict the appropriate output vector for a given input vector.

Applications where the target label is a finite number of discrete categories are
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known as classification tasks. Cases where the target label is composed of one375

or more continuous variables are known as regression [57].

Defining the objective of unsupervised learning is difficult. One of the major

objectives is to identify the sensible clusters of similar samples within the input

data, known as clustering. Moreover, the objective may be the discovery of a

useful internal representation for the input data by preprocessing the original380

input variable in order to transfer it into a new variable space. This preprocess-

ing stage can significantly improve the result of the subsequent machine learning

algorithm and is named feature extraction [55].

The frequently applied machine learning algorithms for smart data analysis

are tabulated in Table 2.385

In the following subsections, we assume that we are given a training set

containing N training samples denoted as {(xi, yi)}Ni=1, where xi is the the

ith training M -dimensional input vector and yi is it’s corresponding desired

P -dimensional output vector. Moreover, we collect the M -dimensional input

vectors into a matrix, written x ≡ (x1, . . . , xN )T , and we also collect their390

corresponding desired output vectors in a matrix, written y ≡ (y1, . . . , yN )T .

However, in Section 5.4 the training set does not contain the desired output

vectors.

5.1. Classification

5.1.1. K-Nearest Neighbors395

In K-nearest neighbors (“KNN”), the objective is to classify a given new,

unseen data point by looking at K given data points in the training set, which

are closest in input or feature space. Therefore, in order to find the K nearest

neighbors of the new data point, we have to use a distance metric such as Eu-

clidean distance, L∞ norm, angle, Mahalanobis distance or Hamming distance.400

To formulate the problem, let us denote the new input vector (data point) by

x, it’s K nearest neighbors by Nk(x), the predicted class label for x by y, and

the class variable by a discrete random variable t. Additionally, 1(.) denotes

indicator function: 1(s) = 1 if s is true and 1(s) = 0 otherwise. The form of
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Table 2: Overview of frequently used machine learning algorithms for smart data analysis

Machine learning

algorithm

Data processing tasks Section
Representative

references

K-Nearest Neighbors Classification 5.1.1 [58] [59]

Naive Bayes Classification 5.1.2 [60] [61]

Support Vector Machine Classification 5.1.3
[62] [63] [64]

[65]

Linear Regression Regression 5.2.1
[66] [66] [67]

[68]

Support Vector

Regression

Regression 5.2.2
[69]

[70]

Classification and

Regression Trees

Classification/Regression 5.3.1
[71] [72]

[73]

Random Forests Classification/Regression 5.3.2 [74]

Bagging Classification/Regression 5.3.3 [75]

K-Means Clustering 5.4.1 [76] [77] [78]

Density-Based Spatial

Clustering of Applications

with Noise

Clustering 5.4.2

[79]

[80]

[81]

Principal Component

Analysis

Feature extraction 5.5.1
[82] [83] [84] [85]

[86]

Canonical Correlation

Analysis

Feature extraction 5.5.2
[87]

[88]

Feed Forward Neural

Network

Regression/Classification/

Clustering/Feature extraction
5.6.1

[89] [90] [91] [92] [93]

[57]

One-class Support

Vector Machines

Anomaly detection 5.8.1
[94]

[95]
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the classification task is405

p(t = c|x,K) =
1

K

∑
i∈Nk(x)

1(ti = c),

y = arg max
c

p(t = c|x,K)

(1)

i.e., the input vector x will be labeled by the mode of its neighbors’ labels [58].

One limitation of KNN is that it requires storing the entire training set,

which makes KNN unable to scale large data sets. In [59], authors have ad-

dressed this issue by constructing a tree-based search with some one-off com-410

putation. Moreover, there exists an online version of KNN calcification. It is

worth noting that KNN can also be used for regression task [55]. However we

don’t explain it here, since it is not a frequently used algorithm for smart data

analysis. [96] proposes a new framework for learning a combination of multiple

metrics for a robust KNN classifier. Also, [47] compares K-Nearest Neighbor415

with a rough-set-based algorithm for classifying the travel pattern regularities.

5.1.2. Naive Bayes

Given a new, unseen data point (input vector) z = (z1, . . . , zM ), naive Bayes

classifiers, which are a family of probabilistic classifiers, classify z based on

applying Bayes’ theorem with the “naive” assumption of independence between

the features (attributes) of z given the class variable t. By applying the Bayes’

theorem we have

p(t = c|z1, . . . , zM ) =
p(z1, . . . , zM |t = c)p(t = c)

p(z1, . . . , zM )
(2)

and by applying the naive independence assumption and some simplifications

we have

p(t = c|z1, . . . , zM ) ∝ p(t = c)

M∏
j=1

p(zj |t = c) (3)

Therefore, the form of the classification task is

y = arg max
c

p(t = c)

M∏
j=1

p(zj |t = c) (4)
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where y denotes the predicted class label for z. The different naive Bayes

classifiers use different approaches and distributions to estimate p(t = c) and

p(zj |t = c) [61].420

Naive Bayes classifiers require a small number of data points to be trained,

can deal with high-dimensional data points, and are fast and highly scalable

[60]. Moreover, they are a popular model for applications such as spam filtering

[97], text categorization, and automatic medical diagnosis [98]. [49] used this425

algorithm to combine factors to evaluate the trust value and calculate the final

quantitative trust of the Agricultural product.

5.1.3. Support Vector Machine

The classical Support Vector Machines (SVMs) are non-probabilistic, bi-

nary classifiers that aim at finding the dividing hyperplane which separates

both classes of the training set with the maximum margin. Then, the predicted

label of a new, unseen data point, is determined based on which side of the hy-

perplane it falls [62]. First, we discuss the Linear SVM that finds a hyperplane,

which is a linear function of the input variable. To formulate the problem, we

denote the normal vector to the hyperplane by w and the parameter for control-

ling the offset of the hyperplane from the origin along its normal vector by b.

Moreover, in order to ensure that SVMs can deal with outliers in the data, we

introduce variable ξi, that is, a slack variable, for every training point xi that

gives the distance of how far this training point violates the margin in the units

of |w|. This binary linear classification task is described using a constrained

optimization problem of the form

minimize
w,b,ξ

f(w, b, ξ) =
1

2
wTw + C

n∑
i=1

ξi

subject to yi(w
Txi + b)− 1 + ξi ≥ 0 i = 1, . . . , n,

ξi ≥ 0 i = 1, . . . , n.

(5)

where parameter C > 0 determines how heavily a violation is punished [65, 63].

It should be noted that although here we used L1 norm for the penalty term430
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∑n
i=1 ξi, there exist other penalty terms such as L2 norm which should be cho-

sen with respect to the needs of the application. Moreover, parameter C is a

hyperparameter which can be chosen via cross-validation or Bayesian optimiza-

tion. To solve the constrained optimization problem of equation 5, there are

various techniques such as quadratic programming optimization [99], sequential435

minimal optimization [100], and P-packSVM [101]. One important property of

SVMs is that the resulting classifier only uses a few training points, which are

called support vectors, to classify a new data point.

In addition to performing linear classification, SVMs can perform a non-linear

classification which finds a hyperplane that is a non-linear function of the input440

variable. To do so, we implicitly map an input variable into high-dimensional

feature spaces, a process which is called kernel trick [64]. In addition to per-

forming binary classification, SVMs can perform multiclass classification. There

are various ways to do so, such as One-vs-all (OVA) SVM, All-vs-all (AVA) SVM

[54], Structured SVM [102], and the Weston and Watkins [103] version.445

SVMs are among the best off-the-shelf, supervised learning models that are

capable of effectively dealing with high-dimensional data sets and are efficient

regarding memory usage due to the employment of support vectors for predic-

tion. One significant drawback of this model is that it does not directly provide

probability estimates. When given a solved SVM model, its parameters are450

difficult to interpret [104]. SVMs are of use in many real-world applications

such as hand-written character recognition [105], image classification [106], and

protein classification[107]. Finally, we should note that SVMs can be trained

in an online fashion, which is addressed in [108]. [109] proposed a method on

the Intel Lab Dataset. This data set consist of four environmental variables455

(Temperature, Voltage, Humidity, light) collected through S4 Mica2Dot sensors

over 36 days at per-second rate.
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5.2. Regression

5.2.1. Linear Regression

In linear regression the objective is to learn a function f(x,w). This is a

mapping f : φ(x) → y and is a linear combination of a fixed set of a linear or

nonlinear function of the input variable denoted as φi(x), called a basis function.

The form of f(x,w) is

f(x,w) = φ(x)Tw (6)

where w is the weight vector or matrix w = (w1, . . . , wD)T , and φ = (φ1, . . . , φD)T .460

There exists a broad class of basis functions such as polynomial, gaussian ra-

dial, and sigmoidal basis functions which should be chosen with respect to the

application [68, 66].

For training the model, there exists a range of approaches: Ordinary Least465

Square, Regularized Least Squares, Least-Mean-Squares (LMS) and Bayesian

Linear Regression. Among them, LMS is of particular interest since it is fast,

scaleable to large data sets and learns the parameters online by applying the

technique of stochastic gradient descent, also known as sequential gradient de-

scent [67, 55].470

By using proper basis functions, it can be shown that arbitrary nonlineari-

ties in the mapping from the input variable to output variable can be modeled.

However, the assumption of fixed basis functions leads to significant shortcom-

ings with this approach. For example, the increase in the dimension of the input475

space is coupled with rapid growth in the number of basis functions [55, 66, 56].

Linear regression can process at a high rate; [48] use this algorithm to analyze

and predict the energy usage of buildings.

5.2.2. Support Vector Regression

The SVM model described in Section 5.1.3 can be extended to solve re-480

gression problems through a process called Support Vector Regression (SVR).
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Analogous to support vectors in SVMs, the resulting SVR model depends only

on a subset of the training points due to the rejection of training points that

are close to the model prediction [69]. Various implementations of SVR exist

such as epsilon-support vector regression and nu-support vector regression [70].485

Authors in [46] proposed a hybrid method to have accurate temperature and

humidity data prediction.

5.3. Combining Models

5.3.1. Classification and Regression Trees

In classification and regression trees (CART), the input space is partitioned

into axis-aligned cuboid regions Rk, and then a separate classification or re-

gression model is assigned to each region in order to predict a label for the

data points which fall into that region [71]. Given a new, unseen input vector

(data point) x, the process of predicting the corresponding target label can be

explained by traversal of a binary tree corresponding to a sequential decision-

making process. An example of a model for classification is one that predicts a

particular class over each region and for regression, a model is one that predicts

a constant over each region. To formulate the classification task, we denote a

class variable by a discrete random variable t and the predicted class label for

x by y. The classification task takes the form of

p(t = c|k) =
1

|Rk|
∑
i∈Rk

1(ti = c),

y = arg max
c

p(t = c|x) = arg max
c

p(t = c|k)

(7)

where 1(.) is the indicator function described in Section 5.1.1. This equation490

means x will be labeled by the most common (mode) label in it’s corresponding

region [73].

To formulate the regression task, we denote the value of the output vector

by t and the predicted output vector for x by y. The regression task is expressed
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ALGORITHM 1: Algorithm for Training CART

Input: labeled training data set D = {(xi, yi)}Ni=1.

Output: Classification or regression tree.

fitTree(0, D, node)

function fitTree(depth, R, node)

if the task is classification then
node.prediction := most common label in R

else
node.prediction := mean of the output vector of the data points in R

end

(i∗, z∗, RL, RR) := split(R)

if worth splitting and stopping criteria is not met then

node.test := xi∗ < z∗

node.left := fitTree(depth+ 1, RL, node)

node.right := fitTree(depth+ 1, RR, node)

end

return node

as

y =
1

|Rk|
∑
i∈Rk

ti (8)

i.e., the output vector for x will be the mean of the output vector of data points

in it’s corresponding region [73].495

To train CART, the structure of the tree should be determined based on

the training set. This means determining the split criterion at each node and

their threshold parameter value. Finding the optimal tree structure is an NP-

complete problem, therefore a greedy heuristic which grows the tree top-down500

and chooses the best split node-by-node is used to train CART. To achieve

better generalization and reduce overfilling some stopping criteria should be

used for growing the tree. Possible stopping criterion are: the maximum depth

reached, whether the distribution in the branch is pure, whether the benefit of

splitting is below a certain threshold, and whether the number of samples in505
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each branch is below the criteria threshold. Moreover, after growing the tree,

a pruning procedure can be used in order to reduce overfitting, [72, 55, 56].

Algorithm 1 describes how to train CART.

The major strength of CART is it’s human interpretability due to its tree510

structure. Additionally, it is fast and scalable to large data sets; however, it is

very sensitive to the choice of the training set [110]. Another shortcoming with

this model is unsmooth labeling of the input space since each region of input

space is associated with exactly one label [73, 55]. [47] proposes an efficient and

effective data-mining procedure that models the travel patterns of transit riders515

in Beijing, China.

5.3.2. Random Forests

In random forests, instead of training a single tree, an army of trees are

trained. Each tree is trained on a subset of the training set, chosen randomly

along with replacement, using a randomly chosen subset of M input variables520

(features) [74]. From here, there are two scenarios for the predicted label of a

new, unseen data point: (1) in classification tasks; it is used as the mode of the

labels predicted by each tree; (2) in regression tasks it is used as the mean of the

labels predicted by each tree. There is a tradeoff between different values of M .

A value of M that is too small leads to random trees with penniless prediction525

power, whereas a value of M that is too large leads to very similar random trees.

Random forests have very good accuracy but at the cost of losing human

interpretability [111]. Additionally, they are fast and scalable to large data sets

and have many real-world applications such as body pose recognition [112] and530

body part classification.

5.3.3. Bagging

Bootstrap aggregating, also called bagging, is an ensemble technique that

aims to improve the accuracy and stability of machine learning algorithms and
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reduce overfitting. In this technique, K new M sized training sets are generated535

by randomly choosing data points from the original training set with replace-

ment. Then, on each new generated training set, a machine learning model

is trained, and the predicted label of a new, unseen data point is the mode

of the predicted labels by each model in the case of classification tasks and is

the mean in the case of regression tasks. There are various machine learning540

models such as CART and neural networks, for which the bagging technique

can improve the results. However, bagging degrades the performance of stable

models such as KNN [75]. Examples of practical applications include customer

attrition prediction [113] and preimage learning [114, 115].

5.4. Clustering545

5.4.1. K-means

In K-means algorithm, the objective is to cluster the unlabeled data set into

a given K number of clusters (groups) and data points belonging to the same

cluster must have some similarities. In the classical K-means algorithm, the

distance between data points is the measure of similarity. Therefore, K-means

seeks to find a set of K cluster centers, denoted as {s1, . . . , sk}, which minimize

the distance between data points and the nearest center [77]. In order to denote

the assignment of data points to the cluster centers, we use a set of binary

indicator variables πnk ∈ {0, 1}; so that if data point xn is assigned to the

cluster center sk, then πnk = 1. We formulate the problem as follows:

minimize
s,π

N∑
n=1

K∑
k=1

πnk‖xn − sk‖2

subject to

K∑
k=1

πnk = 1, n = 1, . . . , N.

(9)

Algorithm 2 describes how to learn the optimal cluster centers {sk} and the

assignment of the data points {πnk}.

In practice, K-means is a very fast and highly scalable algorithm. Moreover,550

there is an stochastic, online version of K-means [78]. However, this approach
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ALGORITHM 2: K-means Algorithm

Input: K, and unlabeled data set {x1, . . . , xN}.

Output: Cluster centers {sk} and the assignment of the data points {πnk}.

Randomly initialize {sk}.

repeat

for n := 1 to N do

for k := 1 to K do

if k = arg mini ‖si − xi‖2 then
πnk := 1

else
πnk := 0

end

end

end

for k := 1 to K do

sk :=
∑N

n=1 xnπnk∑N
n=1 πnk

end

until {πnk} or {sk} don’t change;

has many limitations due to the use of Euclidean distance as the measure of

similarity. For instance, it has limitations on the types of data variables that can

be considered and cluster centers are not robust against outliers. Additionally,

the K-means algorithm assigns each data point to one, and only one of the555

clusters which may lead to inappropriate clusters in some cases [76]. [116] use

MapReduce to analyze the numerous small data sets and proposes a cluster

strategy for high volume of small data based on the k-means algorithm. [47]

applied K-Means++ to cluster and classify travel pattern regularities. [117]

introduced real-time event processing and clustering algorithm for analyzing560

sensor data by using the OpenIoT1 middleware as an interface for innovative

analytical IoT services.
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5.4.2. Density-Based Spatial Clustering of Applications with Noise

In a density-based spatial clustering of applications with noise (DBSCAN)

approach, the objective is to cluster a given unlabeled data set based on the565

density of its data points. In this model, groups of dense data points (data

points with many close neighbors) are considered as clusters and data points

in regions with low-density are considered as outliers [80]. [79] present an algo-

rithm to train a DBSCAN model.

570

In practice, DBSCAN is efficient on large datasets and is fast and robust

against outliers. Also, it is capable of detecting clusters with an arbitrary shape

(i.e., spherical, elongated, and linear). Moreover, the model determines the

number of clusters based on the density of the data points, unlike K-means

which requires the number of clusters to be specified [79]. However, there are575

some disadvantages associated with DBSCAN. For example, in the case of a

data set with large differences in densities, the resulting clusters are destitute.

Additionally, the performance of the model is very sensitive to the distance

metric that is used for determining if a region is dense [81]. It is worth, how-

ever, noting that DBSCAN is among the most widely used clustering algorithms580

with numerous real world applications such as anomaly detection in tempera-

ture data [118] and X-ray crystallography [79]. Authors in [109] believe that

knowledge discovery in data streams is a valuable task for research, business,

and community. They applied Density-based clustering algorithm DBSCAN on

a data stream to reveal the number of existing classes and subsequently label585

of the data. Also In [52] this algorithm used to find the arbitrary shape of the

cluster. DBSCAN algorithm produces sets of clusters with arbitrary shape and

outliers objects.

5.5. Feature Extraction

5.5.1. Principal Component Analysis590

In principle component analysis (PCA), the objective is to orthogonally

project data points onto an L dimensional linear subspace, called the prin-
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ALGORITHM 3: PCA Algorithm

Input: L, and input vectors of an unlabeled or labeled data set {x1, . . . , xN}.

Output: The projected data set {z1, . . . , zN}, and basis vectors {wj} which form

the principal subspace.

x̄ := 1
N

∑
n xn

S := 1
N

∑
n(xn − x̄)(xn − x̄)T

{wj} := the L eigenvectors of S corresponding to the L largest eigenvalues.

for n := 1 to N do

for j := 1 to L do

znj := (xn − x̄)Twj

end

end

cipal subspace, which has the maximal projected variance [83, 85]. Equivalently,

the objective can be defined as finding a complete orthonormal set of L linear

basis M-dimensional vectors {wj} and the corresponding linear projections of

data points {znj} such that the average reconstruction error

J =
1

N

∑
n

‖x̃n − xn‖2,

x̃n =

L∑
j=1

znjwj + x̄

(10)

is minimized, where x̄ is the average of all data points [82, 55].

Algorithm 3 describes how the PCA technique achieves these objectives.

Depending on how {w1, . . . , wL} is calculated, the PCA algorithm can have dif-

ferent run times i.e., O(M3), O(LM2), O(NM2) and O(N3) [119, 55, 120]. In595

order to deal with high dimensional data sets, there is a different version of the

PCA algorithm which is based on the iterative Expectation Maximization tech-

nique. In this algorithm, the covariance matrix of the dataset is not explicitly

calculated, and its most computationally demanding steps are O(NML). In

addition, this algorithm can be implemented in an online fashion, which can600
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also be advantageous in cases where M and N are large [84, 56].

PCA is one of the most important preprocessing techniques in machine learn-

ing. Its application involves data compression, whitening, and data visualiza-

tion. Examples of its practical applications are face recognition, interest rate605

derivatives portfolios, and neuroscience. Furthermore, there exists a kernelized

version of PCA, called KPCA which can find nonlinear principal components

[86, 84].

5.5.2. Canonical Correlation Analysis

Canonical correlation analysis (CCA), is a linear dimensionality reduction610

technique which is closely related to PCA. Unlike PCA which deals with one

variable, CCA deals with two or more variables and its objective is to find a

corresponding pair of highly cross-correlated linear subspaces so that within

one of the subspaces there is a correlation between each component and a single

component from the other subspace. The optimal solution can be obtained615

by solving a generalized eigenvector problem [87, 88, 55]. [51] compared PCA

and CCA for detecting intermittent faults and masking failures of the indoor

environments.

5.6. Neural Network

One of the shortcomings of linear regression is that it requires deciding the620

types of basis functions. It is often hard to decide the optimal basis functions.

Therefore, in neural networks we fix the number of basis functions but we let the

model learn the parameters of the basis functions. There exist many different

types of neural networks with different architectures, use cases, and applications.

In subsequent subsections, we discuss the successful models used in smart data625

analysis. Note that, neural networks are fast to process new data since they are

compact models; on the contrary, however, they usually need the high amount

of computation in order to be trained. Moreover, they are easily adaptable to

regression and classification problems [91, 90].
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5.6.1. Feed Forward Neural Network630

Feed Forward Neural Networks (FFNN), also known as multilayer percep-

trons (MLP), are the most common type of neural networks in practical appli-

cations. To explain this model we begin with a simple two layer FFNN model.

Assume that we have D basis functions and our objective is to learn the param-

eters of these basis functions together with the function f discussed in Section635

5.2.1. The form of the classification or regression task is

f(x,w(1), w(2)) = φ(2)(φ(1)(xTw(1))Tw(2)) (11)

where w(1) = (w
(1)
1 , . . . , w

(1)
M )T , φ(1) = (φ

(1)
1 , . . . , φ

(1)
D )T , w(2) = (w

(2)
1 , . . . , w

(2)
D )T ,

and φ(2) = (φ
(2)
1 , . . . , φ

(2)
P )T . Figure 3 visualizes this FFNN model. The elements

of input vector x are units (neurons) in the input layer, φ
(1)
i are the units in

the hidden layer, and φ
(2)
i are the units in the output layer which outputs f .640

Note that the activities of the units in each layer are a nonlinear function of

the activities in the previous layer. In machine learning literature, φ(.) is also

called activation function. The activation function in the last layer is chosen

with respect to the data processing task. For example, for regression task we

use linear activation and for multiclass classification we use softmax activation645

function [57, 91, 55].

With enough hidden units, an FFNN with at least two layers can approx-

imate an arbitrary mapping from a finite input space to a finite output space

[121, 122, 123]. However, for an FFNN, finding the optimum set of weights w is650

an NP-complete problem [124]. To train the model, there is a variety range of

learning methods such as stochastic gradient descent, adaptive delta, adaptive

gradient, adaptive moment estimation, Nesterov’s accelerated gradient and RM-

Sprob. To improve the generalization of the model and reduce overfitting, there

are a range of methods such as weight decay, weight-sharing, early stopping,655

Bayesian fitting of neural nets, dropout, and generative pre-training [92, 89].

31



Figure 3: A two layers feed forward neural network. Note that each output neuron is connected

to each input neuron, i.e., it is a fully connected neural network.

A two layer FFNN has the properties of restricted representation and gener-

alization. Moreover, compactly represented functions with l layers may require

exponential size with l − 1 layers. Therefore, an alternative approach would660

be an FFNN with more than one hidden layers, i.e., a deep neural network, in

which different high-level features share low-level features [93, 90]. Significant

results with deep neural networks have led them to be the most commonly used

classifiers in machine learning [125, 57]. [126] present the method to forecast

the states of IoT elements based on an artificial neural network. The presented665

architecture of the neural network is a combination of a multilayered percep-

tron and a probabilistic neural network. Also, [21] use FFNN for processing the

health data.

5.7. Time Series and Sequential Data

So far in this article, the discussed algorithms dealt with set of data points670

that are independent and identically distributed (i.i.d.). However, the set of

data points are not i.i.d. for many cases, often resulting from time series mea-

surements, such as the daily closing value of the Dow Jones Industrial Average

and acoustic features at successive time frames. An example of non i.i.d set

of data points in a context other than a time series is a character sequence in675
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a German sentence. In these cases, data points consist of sequences of (x, y)

pairs rather than being drawn i.i.d. from a joint distribution p(x,y) and the

sequences exhibit significant sequential correlation [127, 55].

In a sequential supervised learning problem, when data points are sequen-680

tial, we are given a training set {(xi, yi)}Ni=1 consisting of N samples and each

of them is a pair of sequences. In each sample, xi = 〈xi,1, xi,2, . . . , xi,Ti
〉 and

yi = 〈yi,1, yi,2, . . . , yi,Ti
〉. Given a new, unseen input sequence x, the goal is

to predict the desired output sequence y. Moreover, there is a closely related

problem, called a time-series prediction problem, in which the goal is to pre-685

dict the desired t + 1st element of a sequence 〈y1, . . . , yt〉. The key difference

between them is that unlike sequential supervised learning, where the entire se-

quence 〈x1, . . . , xT 〉 is available prior to any prediction, in time-series prediction

only the prefix of the sequence, up to the current time t + 1, is available. In

addition, in sequential supervised learning, the entire output sequence y has to690

be predicted, whereas in time-series prediction, the true observed values of the

output sequence up to time t are given. It is worth noting that there is another

closely-related task, called sequence classification, in which the goal is to predict

the desired, single categorical output y given an input sequence x [127].

695

There are a variety of machine learning models and methods which can deal

with these tasks. Examples of these models and methods are hidden Markov

models [128, 129], sliding-window methods [130], Kalman filter [131], conditional

random fields [132], recurrent neural networks [133, 57], graph transformer net-

works [89], and maximum entropy Markov models [134]. In addition, sequential700

time series and sequential data exists in many real world applications, including

speech recognition [135], handwriting recognition [136], musical score following

[137], and information extraction [134].
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5.8. Anomaly Detection

The problem of identifying items or patterns in the data set that do not705

conform to other items or an expected pattern is referred to as anomaly de-

tection and these unexpected patterns are called anomalies, outliers, novelties,

exceptions, noise, surprises, or deviations [138, 139].

There are many challenges in the task of anomaly detection which distin-710

guish it from a binary classification task. For example, an anomalous class is

often severely underrepresented in the training set. In addition, anomalies are

much more diverse than the behavior of the normal system and are sparse by

nature [140, 139].

715

There are three broad categories of anomaly detection techniques based on

the extent to which the labels are available. In supervised anomaly detection

techniques, a binary (abnormal and normal) labeled data set is given, then, a

binary classifier is trained; this should deal with the problem of the unbalanced

data set due to the existence of few data points with the abnormal label. Semi-720

supervised anomaly detection techniques require a training set that contains

only normal data points. Anomalies are then detected by building the normal

behavior model of the system and then testing the likelihood of the generation

of the test data point by the learned model. Unsupervised anomaly detection

techniques deal with an unlabeled data set by making the implicit assumption725

that the majority of the data points are normal [139].

Anomaly detection is of use in many real world applications such as system

health monitoring, credit card fraud detection, intrusion detection [141], de-

tecting eco-system disturbances, and military surveillance. Moreover, anomaly730

detection can be used as a preprocessing algorithm for removing outliers from

the data set, that can significantly improve the performance of the subsequent

machine learning algorithms, especially in supervised learning tasks [142, 143].

In the following subsection we shall explain one-class support vector machines
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one of the most popular techniques for anomaly detection. [45] build a novel735

outlier detection algorithm that uses statistical techniques to identify outliers

and anomalies in power datasets collected from smart environments.

5.8.1. One-class Support Vector Machines

One-class support vector machines (OCSVMs) are a semi-supervised anomaly

detection technique and are an extension of the SVMs discussed in Section 5.1.3740

for unlabeled data sets. Given a training set drawn from an underlying probabil-

ity distribution P , OCSVMs aim to estimate a subset S of the input space such

that the probability that a drawn sample from P lies outside of S is bounded by

a fixed value between 0 and 1. This problem is approached by learning a binary

function f which captures the input regions where the probability density lives.745

Therefore, f is negative in the complement of S. The functional form of f can

be computed by solving a quadratic programming problem [94, 95].

One-class SVMs are useful in many anomaly detection applications, such

as anomaly detection in sensor networks [144], system called intrusion detec-750

tion [145], network intrusions detection [146], and anomaly detection in wireless

sensor networks [147]. [52] reviewed different techniques of stream data outlier

detection and their issues in detail. [53] use One-class SVM to detect anomalies

by modeling the complex normal patterns in the data.

In the following section, we discussed how to overcome the challenges of755

applying machine learning algorithms to the IoT smart data.

6. Discussion on taxonomy of machine learning algorithms

In order to draw the right decisions for smart data analysis, it is necessary to

determine which one of the tasks whether structure discovery, finding unusual

data points, predicting values, predicting categories, or feature extraction should760

be accomplished.

To discover the structure of data, the one that faces with the unlabeled data,

the clustering algorithms can be the most appropriate tools. K-means described
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in 5.4.1 is the well-known and frequently applied clustering algorithm, which

can handle a large volume of data with a broad range of data types. [50, 52]765

proposed a method for applying K-means algorithm in managing the Smart

City and Smart Home data. DB-scan described in 5.4.2 is another clustering

algorithm to discover the structure of data from the unlabeled data which is

applied in [109, 52, 47] to cluster Smart Citizen behaviors.

To find unusual data points and anomalies in smart data, two important770

algorithms are applied. One class Support Vector Machine and PCA based

anomaly detection methods explained in 5.5.1 which have the ability to train

anomaly and noisy data with a high performance. [52, 53] applied the One class

SVM monitor and find the human activity anomalies.

In order to predict values and classification of sequenced data, Linear re-775

gression and SVR described in 5.2.1 and 5.2.2 are the two frequently applied

algorithms. The objective of the models applied in these algorithms is to process

and train data of high velocity. For example [48, 46] applied linear regression

algorithm for real-time prediction. Another fast training algorithm is the clas-

sification and regression tree described in 5.3.1, applied in classifying Smart780

Citizen behaviors [48, 47].

To predict the categories of the data, neural networks are proper learning

models for function approximation problems. Moreover, because the smart data

should be accurate and it takes a long time to be trained, the multi-class neural

network can be an appropriate solution. For instance, Feed Froward Neural785

Network explained in 5.6.1 applied to reduce energy consumption in future by

predicting how the data in future will be generated and how the redundancy of

the data would be removed [21, 126, 148]. SVM explained in 5.1.3 is another

popular classification algorithm capable of handling massive amounts of data

and classify their different types. Because SVM solves the high volume and the790

variety types of data, it is commonly applied in most smart data processing

algorithms. For example, [109, 48] applied SVM to classify the traffic data.

PCA and CCA described in 5.5.1 and 5.5.2 are the two algorithms vastly

applied in extracting features of the data. Moreover, CCA shows the correlation

36



between the two categories of the data. A type of PCA and CCA are applied to795

finding the anomalies. [51] applied PCA and CCA to monitor the public places

and detect the events in the social areas.

The chosen algorithm should be implemented and developed to make right

decisions.

A sample implemented code is available from the open source GitHub license800

at https://github.com/mhrezvan/SVM-on-Smart-Traffic-Data

7. Research trends and open issues

As discussed before, data analysis have a significant contribution to IoT;

therefore to applied a full potential of analysis to extract new insights from data,

IoT must overcome some major problems. These problems can be categorized805

in three different types.

7.1. IoT Data Characteristics

Because the data are the basis of extracting knowledge, it is vital to have

high quality information. This condition can affect the accuracy of knowledge

extraction in a direct manner. Since IoT produces high volume, fast velocity,810

and varieties of data, preserving the data quality is a hard and challenging

task. Although many solutions have been and are being introduced to solve

these problems, none of them can handle all aspects of data characteristics in

an accurate manner because of the distributed nature of Big Data management

solutions and real-time processing platforms. The abstraction of IoT data is815

low, that is, the data that comes from different resources in IoT are mostly of

raw data and not sufficient enough for analysis. A wide variety of solutions are

proposed, while most of them need further improvements. For instance, seman-

tic technologies tend to enhance the abstraction of IoT data through annotation

algorithms, while they need more efforts to overcome its velocity and volume.820
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7.2. IoT Applications

IoT applications have different categories according to their unique attribu-

tions and features. Certain issues should be proposed in running data analysis

in IoT applications in an accurate manner. First, the privacy of the collected

data is very critical, since data collection process can include personal or critical825

business data, which is inevitable to solve the privacy issues. Second, according

to the vast number of resources and simple-designed hardware in IoT, it is vi-

tal to consider security parameters like network security, data encryption, etc.

Otherwise, by ignoring the security in design and implementation, an infected

network of IoT devices can cause a crisis.830

7.3. IoT Data Analytics Algorithms

According to the smart data characteristics, analytic algorithms should be

able to handle Big Data, that is, IoT needs algorithms that can analyze the data

which comes from a variety of sources in real time. Many attempts are made to

address this issue. For example, deep learning algorithms, evolutionized form835

of neural networks can reach to a high accuracy rate if they have enough data

and time. Deep learning algorithms can be easily influenced by the smart noisy

data, furthermore, neural network based algorithms lack interpretation, this is,

data scientists can not understand the reasons for the model results. In the same

manner, semi-supervised algorithms which model the small amount of labeled840

data with a large amount of unlabeled data can assist IoT data analytics as

well.

8. Conclusions

IoT consists of a vast number of devices with varieties that are connected to

each other and transmit huge amounts of data. The Smart City is one of the845

most important applications of IoT and provides different services in domains

like energy, mobility, and urban planning. These services can be enhanced and

optimized by analyzing the smart data collected from these areas. In order to
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Table 3: Overview of Applying Machine Learning Algorithm to the Internet of Things Use

Cases

Machine learning

Algorithm

IoT, Smart City

use cases
Metric to Optimize References

Classification Smart Traffic
Traffic Prediction,

Increase Data Abbreviation

[43]

[14]

Clustering
Smart Traffic,

Smart Health

Traffic Prediction,

Increase Data Abbreviation

[43] [14]

[44]

Anomaly Detection
Smart Traffic,

Smart Environment

Traffic Prediction, Increase Data Abbreviation,

Finding Anomalies in Power Dataset

[43] [14]

[45]

Support Vector

Regression

Smart Weather

Prediction
Forecasting [46]

Linear Regression

Economics,

Market analysis,

Energy usage

Real Time Prediction,

Reducing Amount of Data

[48]

[148]

Classification

and Regression Trees
Smart Citizens

Real Time Prediction,

Passengers Travel Pattern

[48]

[47]

Support Vector Machine All Use Cases
Classify Data,

Real Time Prediction

[109]

[48]

K-Nearest Neighbors Smart Citizen
Passengers’ Travel Pattern,

Efficiency of the Learned Metric

[47]

[96]

Naive Bayes
Smart Agriculture,

Smart Citizen

Food Safety, Passengers Travel Pattern,

Estimate the Numbers of Nodes

[49] [47]

[148]

K-Means

Smart City,

Smart Home,

Smart Citizen,

Controlling Air

and Traffic

Outlier Detection, fraud detection,

Analyze Small Data set,

Forecasting Energy Consumption,

Passengers Travel Pattern, Stream Data Analyze

[50] [52]

[116] [38]

[47] [117]

Density-Based Clustering Smart Citizen
Labeling Data, Fraud Detection,

Passengers Travel Pattern

[109] [52]

[47]

Feed Forward

Neural Network
Smart Health

Reducing Energy Consumption, Forecast the

States of Elements,

Overcome the Redundant Data and Information

[21] [126]

[148]

Principal

Component Analysis

Monitoring

Public Places
Fault Detection [51]

Canonical

Correlation Analysis

Monitoring

Public Places
Fault Detection [51]

One-class Support

Vector Machines

Smart Human

Activity Control
Fraud Detection, Emerging Anomalies in the data [52] [53]
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extract knowledge from collected data, many data analytic algorithms can be

applied. Choosing a proper algorithm for specific IoT and Smart City applica-850

tion is an important issue. In this article, many IoT data analytic studies are

reviewed to address this issue. Here three facts should be considered in applying

data analytic algorithms to smart data. The first fact is that different applica-

tions in IoT and smart cities have their characteristics as the number of devices

and types of the data that they generate; the second fact is that the generated855

data have specific features that should be realized. The third fact is that the

taxonomy of the algorithms is another important point in applying data analysis

to smart data. The findings in this article make the choice of proper algorithm

for a particular problem easy. The analytic algorithms are of eight categories,

described in detail. This is followed by reviewing application specifics of Smart860

City use cases. The data characteristics and quality of smart data are described

in detail. In the discussion section, how the data characteristics and application

specifics can lead to choosing a proper data analytic algorithms is reviewed. In

the future trend section the recent issues and the future path for research in the

field of smart data analytics are discussed.865
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