CS 740 – Computational Complexity and Algorithm Analysis

Spring Quarter 2012

Slides 2

Pascal Hitzler
Kno.e.sis Center
Wright State University, Dayton, OH
http://www.knoesis.org/pascal/
1. SAT is in NP
2. SAT is NP-hard
SAT is in NP

\[F = \bigg(\bigwedge_{i=1}^{n} \bigg(\bigvee_{j=1}^{m} L_{i,j} \bigg) \bigg) \]

- Non-deterministically pick a truth assignment. Represent this in a look-up table. [linear in number of literals]
- Check if truth assignment satisfies F. [quadratic – because of comparison of input with table entries]

- Formally, we need to do this on a TM – the encoding is a bit unwieldy, but straightforward.
1. SAT is in NP
2. SAT is NP-hard
Idea

- Give a logical formula which transforms computations of a TM M with input string u into a formula $f(u)$ s.t.

 $$u \text{ is accepted } \iff f(u) \text{ is satisfiable.}$$

- Show that transformation is polynomial.

- $[f(u)$ doesn’t have to be in CNF because of Exercise 30$]$
Encoding

ND TM M:
- states: q_0, \ldots, q_m
- alphabet: $B = a_0, \ldots, a_t$
- accepting state: q_m
- rejecting state: q_{m-1} (only one)

$p(n)$ polynomial which is upper bound to number of computations

Boolean variables:
- $Q_{i,k}$ M is in state q_i at time k
- $P_{j,k}$ Tape head is in position j at time k
- $S_{j,r,k}$ Tape position j contains symbol a_r at time k
SAT is NP-hard: Clauses \textit{i} & \textit{ii}

<table>
<thead>
<tr>
<th>Clause</th>
<th>Conditions</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{i})</td>
<td>State</td>
<td>$0 \leq k \leq p(n)$</td>
</tr>
<tr>
<td></td>
<td>$\bigvee_{i=0}^{m} Q_{i,k}$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$\neg Q_{i,k} \lor \neg Q_{i',k}$</td>
<td>$0 \leq i < i' \leq m$</td>
</tr>
<tr>
<td></td>
<td>$0 \leq k \leq p(n)$</td>
<td>$</td>
</tr>
<tr>
<td>\textit{ii})</td>
<td>Tape head</td>
<td>$0 \leq k \leq p(n)$</td>
</tr>
<tr>
<td></td>
<td>$\bigvee_{j=0}^{p(n)} P_{j,k}$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$\neg P_{j,k} \lor \neg P_{j',k}$</td>
<td>$0 \leq j < j' \leq p(n)$</td>
</tr>
<tr>
<td></td>
<td>$0 \leq k \leq p(n)$</td>
<td>$</td>
</tr>
</tbody>
</table>
SAT is NP-hard: Clause iii

<table>
<thead>
<tr>
<th>Clause</th>
<th>Conditions</th>
<th>Interpretation</th>
</tr>
</thead>
</table>
| iii) Symbols | $\forall_{r=0}^{t} S_{j,r,k}$
$0 \leq j \leq p(n)$
$0 \leq k \leq p(n)$ | For each time k and position j, position j contains at least one symbol
[p(n)2 clauses, t literals each] |
| $\neg S_{j,r,k} \lor \neg S_{j,r',k}$ | $0 \leq j \leq p(n)$
$0 \leq r < r' \leq t$
$0 \leq k \leq p(n)$ | … and at most one symbol
[O(t^2) \times p(n)2 clauses] |
Clause Interpretation

<table>
<thead>
<tr>
<th>Clause</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>iv) Initialization</td>
<td></td>
</tr>
<tr>
<td>(Q_{0,0})</td>
<td>Begin in state 0</td>
</tr>
<tr>
<td>(P_{0,0})</td>
<td>…reading leftmost tape cell (position 0)</td>
</tr>
<tr>
<td>(S_{0,0,0})</td>
<td>…which contains a blank (symbol 0)</td>
</tr>
<tr>
<td>(S_{1,r1,0})</td>
<td>The next n symbols contain the input string, (a_{r1}), (a_{r2}), … (a_{rn})</td>
</tr>
<tr>
<td>(S_{2,r2,0})</td>
<td>(S_{n,rn,0})</td>
</tr>
<tr>
<td>(S_{n+1,0,0})</td>
<td>And the rest of the tape contains blanks…</td>
</tr>
<tr>
<td>(S_{p(n),0,0})</td>
<td>… for the entire accessible portion</td>
</tr>
<tr>
<td>v) Final state</td>
<td></td>
</tr>
<tr>
<td>(Q_{m,p(n)})</td>
<td>The computation ends in (q_m) – the accepting state</td>
</tr>
</tbody>
</table>
A computation that satisfies all of these clauses still doesn’t necessarily follow the rules of the machine, M.

Each state/symbol/position after time 0 must be obtained from the transition rules of M.
Tape Consistency

<table>
<thead>
<tr>
<th>Clause</th>
<th>Conditions</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vi) Tape</td>
<td>0 ≤ j ≤ p(n)</td>
<td>Symbols not at the position of the tape head are unchanged</td>
</tr>
<tr>
<td>Changes</td>
<td>0 ≤ r ≤ t</td>
<td>[p(n)^2 × t clauses]</td>
</tr>
<tr>
<td>(\neg S_{j,r,k} \lor P_{j,k} \lor S_{j,r,k+1})</td>
<td>0 ≤ k ≤ p(n)</td>
<td></td>
</tr>
</tbody>
</table>
Converting rules in δ to clauses

\[\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor Q_{i',k+1} \]

If none of these are satisfied, then we are in state q_i and position j scanning symbol a_r at time k

In that case, the next state must be $Q_{i'}$ or the clause is not satisfied.

For each $\delta(q_i, a_r) = [q_i', ?, ?]$
Same thing for tape symbols

\[\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor S_{j,r',k+1} \]

If none of these are satisfied, then we are in state \(Q_i \) and position \(P_j \) scanning symbol \(S_r \) at time \(k \)

In that case, the next symbol at position \(j \) must be \(S_r \) or the clause is not satisfied.

For each \(\delta(q_i, a_r) = [?, a_r, ?] \)
If none of these are satisfied, then we are in state Q_i and position P_j scanning symbol S_r at time k. In that case, the tape head will move either one position left or one position right.

Where $n(L) = -1$, and $n(R) = +1$

For each $\delta(q_i, a_r) = [?, ?, L/R]$
The conjunction of these three clause types ensures that if we are in a certain state, reading a particular symbol at a particular time, we must be in the right configuration, according to δ in the following time step.

These are machine dependent.
Consistency clauses are constructed for every time, state, tape head position and tape symbol.

However, if we are scanning position 0 and attempt to move left, we go directly to the rejecting state.
Hey, wait a minute!

We’ve been talking like there is only one transition for each state/symbol pair, but this is a non-deterministic Turing machine, right?

Let $\text{trans}(i, j, r, k)$ be the disjunction of all the consistency clause sets for i, j, r, k. The resulting clause ensures that we are in some valid configuration following each transition.
And now we’re done

<table>
<thead>
<tr>
<th>Clause</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vi) Halted</td>
<td></td>
</tr>
</tbody>
</table>
\[-Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor Q_{i,k+1}\] same state

\[-Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor P_{j,k+1}\] same tape head position

\[-Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor S_{j,r,k+1}\] same symbol at position r

For all appropriate \(j, r, k, \) and \(i = q_{m-1}\),

and \(i = q_{m}\)
We’ve defined a set of wff that are satisfiable if (and only if) some computation of ND TM M leads to an accepting final state.
Polynomial transformation?

Can the formula be created from any NDTM M *in polynomial time*?

- The values m and t are independent of the size of the input string. They do not grow with n.
- The number of clauses is polynomial in $p(n)$.

qed