Exercise 6 Let \(L = (V, C, R) \) with \(V = \{w, y\} \), \(C = \{d, e\} \) and \(R = \{r, s\} \) where \(r \) has arity 1 and \(s \) has arity 2. Which of the following are atoms over \(L \)? Which are ground atoms? Justify your answers.

(a) \(d(w, w) \)
(b) \(r(d, e) \)
(c) \(s(w, w) \)
(d) \(r(y) \)

Exercise 7 Let \(L = (V, C, R) \) with \(V = \{x, y\} \), \(C = \{\text{barack, michelle, craig, malia}\} \) and \(R = \{\text{motherOf, parentOf, grandmotherOf}\} \), all with arity 2.

Which of the Datalog facts (1) to (9) from Example 1.1.1 are atoms over \(L \)? Justify your answers.

Exercise 8 Write a Datalog program which captures the following natural language sentences.

(a) If somebody is an orphan, then all his parents are dead.
(b) Every orphan is a human being.
(c) Somebody’s father is also that person’s parent.
(d) Harry Potter is an orphan.
(e) James Potter is the father of Harry Potter.

Exercise 9 Give three distinct Herbrand interpretations for the following Datalog program, where \(a, b \) are constants.

\[
\begin{align*}
q(a) \\
p(b) \\
q(x) & \rightarrow p(x) \\
q(y) \land p(y) & \rightarrow r(b)
\end{align*}
\]

Exercise 10 Evaluate the following.

(a) \((p(x, y, x) \land q(x, y, y) \land r(y, y) \rightarrow t(x))[x/a, y/b] = \ldots \)
(b) \((p(x) \land q(x) \rightarrow r(x))[x/c][x/d] = \ldots \)
(c) \((q(a, x) \land p(x, y) \land q(y, a) \rightarrow r(y))[x/a][x/b] = \ldots \)
(d) \((p(x, x) \land q(x, y) \rightarrow p(x, y))[y/b][y/c][x/b] = \ldots \)

Exercise 11 Which of the substitutions in Exercise 10 are ground substitutions?

Exercise 12 Give the grounding of the Datalog program from Exercise 9.

Exercise 13 Give a Herbrand model for the Datalog program in Exercise 9.

Exercise 14 Give three distinct Herbrand models for the Datalog program \(P \) consisting of the following rules.

\[
\begin{align*}
p(a, b) \\
q(c) \\
p(x, y) & \rightarrow q(x)
\end{align*}
\]