Clustering for Simultaneous Extraction of Aspects and Features from Reviews

TitleClustering for Simultaneous Extraction of Aspects and Features from Reviews
Publication TypeConference Paper
Year of Publication2016
AuthorsLu Chen, Justin Martineau, Doreen Cheng, Amit Sheth
Conference NameNorth American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL: HLT)
Date Published06/2016
Conference LocationSan Diego, California
Keywordsaspect discovery, aspect-based opinion mining, clustering, feature extraction

This paper presents a clustering approach that simultaneously identifies product features and groups them into aspect categories from online reviews. Unlike prior approaches that first extract features and then group them into categories, the proposed approach combines feature and aspect discovery instead of chaining them. In addition, prior work on feature extraction tends to require seed terms and focus on identifying explicit features, while the proposed approach extracts both explicit and implicit features, and does not require seed terms. We evaluate this approach on reviews from three domains. The results show that it outperforms several state-of-the-art methods on both tasks across all three domains.

Full Text
Context-Aware Harassment Detection on Social Media